Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pathol Lab Med ; 147(10): 1178-1185, 2023 10 01.
Article in English | MEDLINE | ID: mdl-36538386

ABSTRACT

CONTEXT.­: Prostate cancer diagnosis rests on accurate assessment of tissue by a pathologist. The application of artificial intelligence (AI) to digitized whole slide images (WSIs) can aid pathologists in cancer diagnosis, but robust, diverse evidence in a simulated clinical setting is lacking. OBJECTIVE.­: To compare the diagnostic accuracy of pathologists reading WSIs of prostatic biopsy specimens with and without AI assistance. DESIGN.­: Eighteen pathologists, 2 of whom were genitourinary subspecialists, evaluated 610 prostate needle core biopsy WSIs prepared at 218 institutions, with the option for deferral. Two evaluations were performed sequentially for each WSI: initially without assistance, and immediately thereafter aided by Paige Prostate (PaPr), a deep learning-based system that provides a WSI-level binary classification of suspicious for cancer or benign and pinpoints the location that has the greatest probability of harboring cancer on suspicious WSIs. Pathologists' changes in sensitivity and specificity between the assisted and unassisted modalities were assessed, together with the impact of PaPr output on the assisted reads. RESULTS.­: Using PaPr, pathologists improved their sensitivity and specificity across all histologic grades and tumor sizes. Accuracy gains on both benign and cancerous WSIs could be attributed to PaPr, which correctly classified 100% of the WSIs showing corrected diagnoses in the PaPr-assisted phase. CONCLUSIONS.­: This study demonstrates the effectiveness and safety of an AI tool for pathologists in simulated diagnostic practice, bridging the gap between computational pathology research and its clinical application, and resulted in the first US Food and Drug Administration authorization of an AI system in pathology.


Subject(s)
Artificial Intelligence , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Image Interpretation, Computer-Assisted/methods , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Biopsy, Needle
2.
J Pathol ; 254(2): 147-158, 2021 06.
Article in English | MEDLINE | ID: mdl-33904171

ABSTRACT

Artificial intelligence (AI)-based systems applied to histopathology whole-slide images have the potential to improve patient care through mitigation of challenges posed by diagnostic variability, histopathology caseload, and shortage of pathologists. We sought to define the performance of an AI-based automated prostate cancer detection system, Paige Prostate, when applied to independent real-world data. The algorithm was employed to classify slides into two categories: benign (no further review needed) or suspicious (additional histologic and/or immunohistochemical analysis required). We assessed the sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs) of a local pathologist, two central pathologists, and Paige Prostate in the diagnosis of 600 transrectal ultrasound-guided prostate needle core biopsy regions ('part-specimens') from 100 consecutive patients, and to ascertain the impact of Paige Prostate on diagnostic accuracy and efficiency. Paige Prostate displayed high sensitivity (0.99; CI 0.96-1.0), NPV (1.0; CI 0.98-1.0), and specificity (0.93; CI 0.90-0.96) at the part-specimen level. At the patient level, Paige Prostate displayed optimal sensitivity (1.0; CI 0.93-1.0) and NPV (1.0; CI 0.91-1.0) at a specificity of 0.78 (CI 0.64-0.89). The 27 part-specimens considered by Paige Prostate as suspicious, whose final diagnosis was benign, were found to comprise atrophy (n = 14), atrophy and apical prostate tissue (n = 1), apical/benign prostate tissue (n = 9), adenosis (n = 2), and post-atrophic hyperplasia (n = 1). Paige Prostate resulted in the identification of four additional patients whose diagnoses were upgraded from benign/suspicious to malignant. Additionally, this AI-based test provided an estimated 65.5% reduction of the diagnostic time for the material analyzed. Given its optimal sensitivity and NPV, Paige Prostate has the potential to be employed for the automated identification of patients whose histologic slides could forgo full histopathologic review. In addition to providing incremental improvements in diagnostic accuracy and efficiency, this AI-based system identified patients whose prostate cancers were not initially diagnosed by three experienced histopathologists. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Artificial Intelligence , Prostatic Neoplasms/diagnosis , Aged , Aged, 80 and over , Biopsy , Biopsy, Large-Core Needle , Humans , Machine Learning , Male , Middle Aged , Pathologists , Prostate/pathology , Prostatic Neoplasms/pathology
3.
Mod Pathol ; 33(10): 2058-2066, 2020 10.
Article in English | MEDLINE | ID: mdl-32393768

ABSTRACT

Prostate cancer (PrCa) is the second most common cancer among men in the United States. The gold standard for detecting PrCa is the examination of prostate needle core biopsies. Diagnosis can be challenging, especially for small, well-differentiated cancers. Recently, machine learning algorithms have been developed for detecting PrCa in whole slide images (WSIs) with high test accuracy. However, the impact of these artificial intelligence systems on pathologic diagnosis is not known. To address this, we investigated how pathologists interact with Paige Prostate Alpha, a state-of-the-art PrCa detection system, in WSIs of prostate needle core biopsies stained with hematoxylin and eosin. Three AP-board certified pathologists assessed 304 anonymized prostate needle core biopsy WSIs in 8 hours. The pathologists classified each WSI as benign or cancerous. After ~4 weeks, pathologists were tasked with re-reviewing each WSI with the aid of Paige Prostate Alpha. For each WSI, Paige Prostate Alpha was used to perform cancer detection and, for WSIs where cancer was detected, the system marked the area where cancer was detected with the highest probability. The original diagnosis for each slide was rendered by genitourinary pathologists and incorporated any ancillary studies requested during the original diagnostic assessment. Against this ground truth, the pathologists and Paige Prostate Alpha were measured. Without Paige Prostate Alpha, pathologists had an average sensitivity of 74% and an average specificity of 97%. With Paige Prostate Alpha, the average sensitivity for pathologists significantly increased to 90% with no statistically significant change in specificity. With Paige Prostate Alpha, pathologists more often correctly classified smaller, lower grade tumors, and spent less time analyzing each WSI. Future studies will investigate if similar benefit is yielded when such a system is used to detect other forms of cancer in a setting that more closely emulates real practice.


Subject(s)
Deep Learning , Diagnosis, Computer-Assisted/methods , Image Interpretation, Computer-Assisted/methods , Pathology, Clinical/methods , Prostatic Neoplasms/diagnosis , Biopsy, Large-Core Needle , Humans , Male
4.
Am J Surg Pathol ; 40(9): 1192-202, 2016 09.
Article in English | MEDLINE | ID: mdl-27259015

ABSTRACT

High-grade neuroendocrine neoplasms (World Health Organization [WHO] G3) of the pancreas include both well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC). According to the WHO classification scheme, the diagnosis of this group of tumors is based on both the histopathology of the tumor and the assessment of proliferation fraction. However, the former can be challenging due to the lack of well-defined histologic criteria, and the latter alone (ie, >20 mitoses/10 high-power fields or Ki67>20%) may not sufficiently distinguish WD-NETs from PD-NECs. Given the considerable differences in treatment strategies and clinical outcome, additional practical modalities are required to facilitate the accurate diagnosis of high-grade pancreatic neuroendocrine neoplasms. We examined 33 cases of WHO G3 neuroendocrine neoplasms of the pancreas and attempted to classify them into WD-NET, small cell PD-NEC (PD-NEC-SCC), and large cell PD-NEC (PD-NEC-LCC) or to designate them as "ambiguous" when an uncertain diagnosis was rendered by any of the observers or there was any disagreement in classification among the 3 observers. To simplify the interpretation, both PD-NEC-SCC and PD-NEC-LCC were considered together as PD-NECs in the final analysis. The initial approach was to assess microscopically a single morphologically challenging hematoxylin and eosin section from each case without the knowledge of Ki67 values, performed independently by 3 pathologists to assess the degree of diagnostic concordance, and then evaluate immunohistochemical staining for surrogate biomarkers of known genotypes of WD-NET and PD-NEC, respectively, and, lastly, complete a clinicopathologic review to establish a final definitive classification. Loss of DAXX or ATRX protein expression defined WD-NET, and abnormal p53, Rb, SMAD4 expression signified PD-NEC. When the chosen section displayed an element of WD histopathology, or other tumor sections contained WHO G1/G2 components, or there had been a prior established diagnosis of a primary WD-NET, the final diagnosis was rendered as a WD-NET with high-grade (G3) progression. If a component of conventional adenocarcinoma was present (in slides not seen in the initial review), the diagnosis was established as a combined adenocarcinoma and PD-NEC. All 3 pathologists agreed on the morphologic classification of 33% of the cases (6 WD-NET, 3 PD-NEC-SCC, and 2 PD-NEC-LCC), were conflicted on 2 cases between PD-NEC-SCC and PD-NEC-LCC, and disagreed or were uncertain on the classification for the remaining 20 cases (61%), which were therefore categorized as ambiguous. In the group of cases in which all pathologists agreed on the classification, the 6 WD-NET cases had either loss of DAXX or ATRX or had evidence of a WD-NET based on additional or prior pathology slides. The 7 PD-NEC cases had abnormal expression of p53, Rb, and/or SMAD4 or a coexisting adenocarcinoma. In the ambiguous group (n=20), 14 cases were established as WD-NETs, based upon loss of DAXX or ATRX in 7 cases and additional pathology evidence of high-grade progression from WD-NET in the other 7 cases; 5 cases were established as PD-NEC based upon abnormal expression of p53, Rb, and/or SMAD4; 1 case remained undetermined with normal expression of all markers and no evidence of entity-defining histologic findings in other slides. On the basis of the final pathologic classifications, the disease-specific survival was 75 and 11 months for the WD-NET and PD-NEC groups, respectively. Thus, we conclude that morphologic diagnosis of high-grade pancreatic neuroendocrine neoplasms is challenging, especially when limited pathologic materials are available, and necessitates better defined criteria. The analysis of both additional sections and prior material, along with an immunohistochemical evaluation, can facilitate accurate diagnosis in the majority of cases and guide the appropriate clinical management and prognosis.


Subject(s)
Carcinoma, Neuroendocrine/classification , Neuroendocrine Tumors/classification , Pancreatic Neoplasms/classification , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/analysis , Carcinoma, Neuroendocrine/mortality , Carcinoma, Neuroendocrine/pathology , Cell Differentiation , Disease-Free Survival , Female , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Grading , Neuroendocrine Tumors/mortality , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Survival Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...