Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 7(22): 33246-56, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27119349

ABSTRACT

Clinically, serum level of folate has been negatively correlated to the stage and progression of liver cancer. Nevertheless, the functional consequence of folate deficiency (FD) in malignancy has not been fully investigated. Human hepatocellular carcinoma (HCC) cells (as study model) and other cancer types such as lung and glioma were cultured under folate deficient (FD) and folate complete (FD) conditions. Molecular characterization including intracellular ROS/RNS (reactive oxygen/nitrogen species), viability, colony formation, cancer stem-like cell (CSC) phenotype analyses were performed. In vivo tumorigenesis under FD and FC conditions were also examined. FD induced a significant increase in ROS and RNS, suppressing proliferative ability but inducing metastatic potential. Mesenchymal markers such as Snail, ZEB2, and Vimentin were significantly up-regulated while E-cadherin down-regulated. Importantly, CSC markers such as Oct4, ß-catenin, CD133 were induced while PRRX1 decreased under FD condition. Furthermore, FD-conditioned HCC cells showed a decreased miR-22 level, leading to the increased expression of its target genes including HDAC4, ZEB2 and Oct4. Finally, xenograft mouse model demonstrated that FD diet promoted tumorigenesis and metastasis as compared to their FC counterparts. Our data provides rationales for the consideration of folate supplement as a metastasis preventive measure.


Subject(s)
Epithelial-Mesenchymal Transition , Folic Acid Deficiency/metabolism , Folic Acid/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Tumor Microenvironment , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Folic Acid Deficiency/genetics , Folic Acid Deficiency/pathology , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Nitrosative Stress , Oxidative Stress , Phenotype , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...