Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35590969

ABSTRACT

Dielectrophoresis (DEP) refers to a type of electrical motion of dielectric particles. Because DEP is caused by particle polarization, it has been utilized to characterize particles. This study investigated the DEP of three types of exosomes, namely bovine milk, human breast milk, and human breast cancer exosomes. Exosomes are kinds of extracellular vesicles. The crossover frequencies of the exosomes were determined by direct observation of their DEPs. Consequently, bovine and human milk exosomes showed similar DEP properties, whereas the cancer exosomes were significantly different from the others. The membrane capacitance and conductivity of the exosomes were estimated using determined values. A significant difference was observed between bovine and human milk exosomes on their membrane capacitance. It was revealed that the membrane capacitances of human breast milk and human breast cancer exosomes were almost identical to those of their host cells and the conductivity of the exosomes were much lower than that of the host cell. Based on these results, DEP separation of the human breast milk and cancer exosomes was demonstrated. These results imply that DEP can be utilized to separate and identify cancer exosomes rapidly. Additionally, our method can be utilized to estimate the electric property of other types of extracellular vesicles.


Subject(s)
Breast Neoplasms , Exosomes , Extracellular Vesicles , Breast Neoplasms/metabolism , Electric Conductivity , Electricity , Electrophoresis , Exosomes/metabolism , Female , Humans
2.
Analyst ; 146(9): 2818-2824, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33949385

ABSTRACT

This study presents a rapid and low-cost amplicon detection method in which amplicons are attached to magnetic microbeads, suspended in deionized water, and subjected to a magnetic field on a hydrophilic surface resulting in the circular agglomeration of amplicon-conjugated microbeads, visible to the naked eye.


Subject(s)
Magnetics , Nucleic Acid Amplification Techniques , Magnetic Phenomena , Microspheres
3.
Biomicrofluidics ; 13(6): 064109, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31737158

ABSTRACT

We propose a new microfluidic device that can be used to determine the change in the negative dielectrophoresis (n-DEP) of dielectric microbeads when a small amount of DNA is attached to them. We previously proposed a DNA detection method based on changes in the DEP of microbeads induced by the attachment of DNA. When target DNA is attached to the microbeads having n-DEP property, the DEP changes from negative to positive. This occurs because electric charges of the DNA increase the surface conductance of the microbeads. Thus, only the DNA-labeled microbeads are attracted to a microelectrode by positive DEP. The trapped DNA-labeled microbeads can be counted by dielectrophoretic impedance measurements. A large amount of DNA (approximately 105 DNA molecules) is required to change the DEP from negative to positive. Even though this method can be combined with DNA amplification, reducing the amount of DNA required can help us to shorten the reaction time. In this study, we aimed to detect DNA less than 105 DNA molecules by determining the change in the n-DEP change. To achieve this, we proposed a simple microfluidic device consisting of a single microchannel and a single pair of microelectrodes. Numerical simulations revealed that the device can identify the slight change in the n-DEP of the microbeads corresponding to the attachment of a small amount of DNA. In practical experiments, the fabricated device distinguished 10-1000 DNA molecules per microbead. This method represents a fast and easy method of DNA detection when combined with DNA amplification techniques.

4.
Biosensors (Basel) ; 7(4)2017 Sep 30.
Article in English | MEDLINE | ID: mdl-28974001

ABSTRACT

In this study, we describe a microbead-based method using dielectrophoresis (DEP) for the fast detection of DNA amplified by polymerase chain reaction (PCR). This electrical method measures the change in impedance caused by DEP-trapped microbeads to which biotinylated target DNA molecules are chemically attached. Using this method, measurements can be obtained within 20 min. Currently, real-time PCR is among the most sensitive methods available for the detection of target DNA, and is often used in the diagnosis of infectious diseases. We therefore compared the quantitation and sensitivity achieved by our method to those achieved with real-time PCR. We found that the microbead DEP-based method exhibited the same detection limit as real-time PCR, although its quantitative detection range was slightly narrower at 10-105 copies/reaction compared with 10-107 copies/reaction for real-time PCR. Whereas real-time PCR requires expensive and complex instruments, as well as expertise in primer design and experimental principles, our novel method is simple to use, inexpensive, and rapid. This method could potentially detect viral and other DNAs efficiently in combination with conventional PCR.


Subject(s)
DNA/metabolism , Dielectric Spectroscopy/methods , Microspheres , Real-Time Polymerase Chain Reaction
5.
IET Nanobiotechnol ; 11(5): 562-567, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28745290

ABSTRACT

In this study, an electrical DNA detection method was applied to bacterial detection. DNA was extracted from bacteria and amplified by polymerase chain reaction. The microbeads were labelled with amplicons, altering their surface conductance and therefore their dielectrophoresis characteristics. Amplicon-labelled microbeads could thus be trapped within a high-strength electric field, where they formed a pearl chain between the electrodes, resulting in an increased conductance between the electrodes. This method reduces the amplicon detection time from 1-2 h to 15 min, compared with the conventional method. The presented method realised quantitative detection of specific bacteria at concentrations above 1 × 105 and 2.4 × 104 CFU/ml for bacterial solutions with and without other bacterial presence, respectively.


Subject(s)
Electrophoresis/methods , Escherichia coli/isolation & purification , Microspheres , Polymerase Chain Reaction/methods , Colony Count, Microbial , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Electrodes , Escherichia coli/genetics , Limit of Detection
6.
Biomicrofluidics ; 4(2)2010 Jun 29.
Article in English | MEDLINE | ID: mdl-20697596

ABSTRACT

Dielectrophoresis (DEP) is an electrokinetic motion of dielectrically polarized materials in nonuniform electric fields. DEP has been successfully applied to manipulation of nanomaterials including carbon nanotubes (CNTs), metallic nanoparticles, and semiconducting nanowires. Under positive DEP force, which attracts nanomaterials toward the higher field region, nanomaterials are trapped in the electrode gap and automatically establish good electrical connections between them and the external measuring circuit. This feature allows us a fast, simple, and low-cost fabrication of nanomaterial-based sensors based on a bottom-up approach. This paper first presents a theoretical background of DEP phenomena and then reviews recent works of the present author, which were aimed to develop nanomaterial-based sensors, such as a CNT gas sensor and a ZnO nanowire photosensor, using DEP fabrication technique. It is also demonstrated that DEP technique enables self-formation of interfaces between various nanomaterials, which can be also applicable as novel sensing transducers.

7.
Nanotechnology ; 17(10): 2567-73, 2006 May 28.
Article in English | MEDLINE | ID: mdl-21727506

ABSTRACT

Wide-gap semiconductors with nanostructures such as nanoparticles, nanorods, nanowires are promising as a new type of UV photosensor. Recently, ZnO (zinc oxide) nanowires have been extensively investigated for electronic and optoelectronic device applications. ZnO nanowires are expected to have good UV response due to their large surface area to volume ratio, and they might enhance the performance of UV photosensors. In this paper, a new fabrication method of a UV photosensor based on ZnO nanowires using dielectrophoresis is demonstrated. Dielectrophoresis (DEP) is the electrokinetic motion of dielectrically polarized materials in non-uniform electric fields. ZnO nanowires, which were synthesized by nanoparticle-assisted pulsed-laser deposition (NAPLD) and suspended in ethanol, were trapped in the microelectrode gap where the electric field became higher. The trapped ZnO nanowires were aligned along the electric field line and bridged the electrode gap. Under UV irradiation, the conductance of the DEP-trapped ZnO nanowires exponentially increased with a time constant of a few minutes. The slow UV response of ZnO nanowires was similar to that observed with ZnO thin films and might be attributed to adsorption and photodesorption of ambient gas molecules such as O(2) or H(2)O. At higher UV intensity, the conductance response became larger. The DEP-fabricated ZnO nanowire UV photosensor could detect UV light down to 10 nW cm(-2) intensity, indicating a higher UV sensitivity than ZnO thin films or ZnO nanowires assembled by other methods.

8.
Nanotechnology ; 17(14): 3421-7, 2006 Jul 28.
Article in English | MEDLINE | ID: mdl-19661585

ABSTRACT

A novel technique for the preparation of water-soluble carbon nanotubes was demonstrated using a pulsed streamer discharge generated in water. The technique involved chemical reactions between radicals generated by the pulsed streamer discharge and carbon nanotubes. The pulsed streamer-treated carbon nanotubes were homogeneously dispersed and well solubilized in water for a month or longer. The mechanism of solubilization of carbon nanotubes by the pulsed streamer discharge is discussed based on FTIR spectroscopy and optical emission spectra measurements. FTIR spectroscopy revealed that -OH groups, which are known to impart a hydrophilic nature to carbon material, were introduced on the carbon nanotube surface. Optical emission spectra from the pulsed streamer plasma showed that highly oxidative O(*) and H(*) radicals were generated in water. These results suggest that the functionalization of the carbon nanotube surface by -OH group can be attributed to the O(*) and H(*) radicals. An advantage of the proposed method is that there is no need for any chemical agents or additives for solubilization. Chemical agents for solubilization are generated from the water itself by the electrochemical reactions induced by the pulsed streamer discharge.

SELECTION OF CITATIONS
SEARCH DETAIL
...