Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Vis ; 25: 593-xxx, 2019.
Article in English | MEDLINE | ID: mdl-31741652

ABSTRACT

Purpose: To quantify the partition coefficient and the diffusion coefficient of metal-carrier proteins in the human lens capsule as a function of age. Methods: Whole lenses from human donors were incubated overnight in a solution of fluorescently labeled transferrin, albumin, or ceruloplasmin. In the central plane of the capsule thickness, fluorescence recovery after photobleaching (FRAP) experiments were conducted to measure the diffusion of the protein within the lens capsule. The anterior portion of the lens was recorded before the FRAP experiments to locate the boundaries of the anterior lens capsule and to measure the partition coefficient of the labeled proteins. The partition coefficient (P), the time to half maximum recovery of the fluorescent intensity (τ1/2), and the diffusion coefficient (D) for each protein were analyzed as a function of donor age. Results: There was no statistically significant relationship between the half maximum recovery time or the diffusion coefficient and age for transferrin (molecular weight [MW]=79.5 kDa, τ1/2=17.26±4.840 s, D=0.17±0.05 µm2/s), serum albumin (MW=66.5 kDa, τ1/2=18.45±6.110 s, D=0.17±0.06 µm2/s), or ceruloplasmin (MW=120 kDa, τ1/2=36.57±5.660 s, D=0.08±0.01 µm2/s). As expected, the larger protein (ceruloplasmin) took longer to recover fluorescent intensity due to its slower movement within the lens capsule. The partition coefficient statistically significantly increased with age for each protein (Palbumin: 0.09-0.71, Pceruloplasmin: 0.42-0.95, Ptransferrin: 0.19-1.17). Conclusions: The diffusion of heavy-metal protein carriers within the anterior lens capsule is not dependent on age, but it is dependent on the size of the protein. The permeability of the lens capsule to these heavy-metal protein carriers increases with age, suggesting that there will be a higher concentration of heavy metals in the older lens. This behavior may favor the formation of cataract, because heavy metals enhance protein oxidation through the Fenton reaction.


Subject(s)
Aging/physiology , Fluorescence Recovery After Photobleaching , Lens Capsule, Crystalline/diagnostic imaging , Adult , Aged , Albumins/metabolism , Ceruloplasmin/metabolism , Diffusion , Humans , Lens Capsule, Crystalline/metabolism , Middle Aged , Transferrin/metabolism , Young Adult
2.
Mol Vis ; 24: 902-912, 2018.
Article in English | MEDLINE | ID: mdl-30713427

ABSTRACT

PURPOSE: This study aimed to quantify the three-dimensional micromorphology of the surface of the human lens capsule as a function of age. METHODS: Imaging experiments were conducted on whole human lenses received from eight human cadavers (donor age range: 30-88 years). Imaging was performed with an atomic force microscope (AFM) in contact mode in fluid. The porosity and surface roughness were quantified from the height images obtained. A novel approach, based on stereometric and fractal analysis of three-dimensional surfaces developed for use in conjunction with AFM data, was also used to analyze the surface microtexture as a function of age. RESULTS: The AFM images obtained depict a highly ordered fibrous structure at the surface of the lens capsule, although the overall structure visually changes with age. Porosity and roughness were quantified for each image and analyzed as a function of donor age. The interfibrillar spacing revealed an increasing trend with age, although this result was not significant (p = 0.110). The root mean square (RMS) deviation and average deviation significantly decreased with increasing age (p<0.001 for both). The fractal analysis provided quantitative values for 29 amplitude, hybrid, functional, and spatial parameters. All the hybrid parameters decreased with age, although not significantly. Of the functional parameters, the surface bearing index increased significantly with age (p = 0.017) and the summit height exhibited a decreasing trend with age (p = 0.298). Of the spatial parameters, the dominant radial wavelength trend moved toward an increase with age (p = 0.103) and the cross-hatch angle tended toward a decrease with age (p = 0.213). CONCLUSIONS: Significant changes in the three-dimensional surface microtexture of the human lens capsule were found with age, although more experiments on a larger dataset are needed to conclude this with certainty. The analyzed AFM images demonstrate a fractal nature of the surface, which is not considered in classical surface statistical parameters. The surface fractal dimension may be useful in ophthalmology for quantifying human lens architectural changes associated with different disease states to further our understanding of disease evolution.


Subject(s)
Imaging, Three-Dimensional/methods , Lens Capsule, Crystalline/ultrastructure , Adult , Age Factors , Aged , Aged, 80 and over , Cadaver , Female , Fractals , Humans , Imaging, Three-Dimensional/instrumentation , Lens Capsule, Crystalline/anatomy & histology , Lens Capsule, Crystalline/diagnostic imaging , Male , Microscopy, Atomic Force/methods , Middle Aged
3.
J Vasc Access ; 17(3): 279-83, 2016 May 07.
Article in English | MEDLINE | ID: mdl-27032456

ABSTRACT

PURPOSE: This study presents a method to quantify micro-stiffness variations in experimental arteriovenous fistulae (AVF). METHODS: AVF created by anastomosing the superficial epigastric vein to the femoral artery in Sprague-Dawley rats were allowed to remodel for 21 days before being harvested and preserved in culture medium. A custom atomic force microscope was used to measure microvascular stiffness (Young's modulus) in three areas of the AVF: the inflow artery, the juxta-anastomotic area, and the outflow vein. Morphometric measurements and collagen and elastin contents were also determined. RESULTS: Atomic force microscopy indentation revealed an increased stiffness in the juxta-anastomotic area of the AVF compared to the outflow vein and inflow artery. The juxta-anastomotic area was also significantly stiffer than the contralateral vein. The lack of elasticity (higher Young's modulus) of the juxta-anastomotic region was associated with a thicker vascular wall that was rich in collagen but poor in elastin. CONCLUSIONS: This study demonstrates for the first time the feasibility of using atomic force microscopy to measure local stiffness variations in experimental AVF. This technique could be instrumental in advancing our understanding of how micro-spatial organization of the AVF wall determines the overall biomechanical performance of this type of vascular access.


Subject(s)
Arteriovenous Shunt, Surgical , Femoral Artery/surgery , Microscopy, Atomic Force , Vascular Stiffness , Veins/surgery , Animals , Biomechanical Phenomena , Collagen/metabolism , Elastic Modulus , Elastin/metabolism , Femoral Artery/metabolism , Femoral Artery/physiopathology , Male , Models, Animal , Rats, Sprague-Dawley , Regional Blood Flow , Time Factors , Vascular Remodeling , Veins/metabolism , Veins/physiopathology
4.
Mol Vis ; 21: 316-23, 2015.
Article in English | MEDLINE | ID: mdl-25814829

ABSTRACT

PURPOSE: To image the ultrastructure of the anterior lens capsule at the nanoscale level using atomic force microscopy (AFM). METHODS: Experiments were performed on anterior lens capsules maintained in their in situ location surrounding the lens from six human cadavers (donor age range: 44-88 years), four cynomolgus monkeys (Macaca fascicularis age range: 4.83-8.92 years), and seven pigs (<6 months). Hydration of all samples was maintained using Dulbecco's Modified Eagle Medium (DMEM). Whole lenses were removed from the eye and placed anterior side up in agarose gel before gel hardening where only the posterior half of the lens was contained within the gel. After the gel hardened, the Petri dish was filled with DMEM until the point where the intact lens was fully submerged. AFM was used to image the anterior lens surface in contact mode. An integrated analysis program was used to calculate the interfibrillar spacing, fiber diameter, and surface roughness of the samples. RESULTS: The AFM images depict a highly ordered fibrous structure at the surface of the lens capsule in all three species. The interfibrillar spacing for the porcine, cynomolgus monkey, and human lens capsules was 0.68±0.25, 1.80±0.39, and 1.08±0.25 µm, respectively. In the primate, interfibrillar spacing significantly decreased linearly as a function of age. The fiber diameters ranged from 50 to 950 nm. Comparison of the root mean square (RMS) and average deviation demonstrate that the surface of the porcine lens capsule is the smoothest, and that the human and cynomolgus monkey capsules are significantly rougher. CONCLUSIONS: AFM was successful in providing high-resolution images of the nanostructure of the lens capsule samples. Species-dependent differences were observed in the overall structure and surface roughness.


Subject(s)
Lens Capsule, Crystalline/ultrastructure , Adult , Aged , Aged, 80 and over , Animals , Humans , Macaca fascicularis , Microscopy, Atomic Force , Middle Aged , Species Specificity , Surface Properties , Swine
5.
Ann Biomed Eng ; 43(4): 906-16, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25266935

ABSTRACT

The objective of this study is to further investigate the ultrastructural details of the surface of Bowman's membrane of the human cornea, using atomic force microscopy (AFM) images. One representative image acquired of Bowman's membrane of a human cornea was investigated. The three-dimensional (3-D) surface of the sample was imaged using AFM in contact mode, while the sample was completely submerged in optisol solution. Height and deflection images were acquired at multiple scan lengths using the MFP-3D AFM system software (Asylum Research, Santa Barbara, CA), based in IGOR Pro (WaveMetrics, Lake Oswego, OR). A novel approach, based on computational algorithms for fractal analysis of surfaces applied for AFM data, was utilized to analyze the surface structure. The surfaces revealed a fractal structure at the nanometer scale. The fractal dimension, D, provided quantitative values that characterize the scale properties of surface geometry. Detailed characterization of the surface topography was obtained using statistical parameters, in accordance with ISO 25178-2: 2012. Results obtained by fractal analysis confirm the relationship between the value of the fractal dimension and the statistical surface roughness parameters. The surface structure of Bowman's membrane of the human cornea is complex. The analyzed AFM images confirm a fractal nature of the surface, which is not taken into account by classical surface statistical parameters. Surface fractal dimension could be useful in ophthalmology to quantify corneal architectural changes associated with different disease states to further our understanding of disease evolution.


Subject(s)
Bowman Membrane/ultrastructure , Fractals , Imaging, Three-Dimensional , Microscopy, Atomic Force , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...