Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 609(7925): 144-150, 2022 09.
Article in English | MEDLINE | ID: mdl-35850148

ABSTRACT

Retrons are prokaryotic genetic retroelements encoding a reverse transcriptase that produces multi-copy single-stranded DNA1 (msDNA). Despite decades of research on the biosynthesis of msDNA2, the function and physiological roles of retrons have remained unknown. Here we show that Retron-Sen2 of Salmonella enterica serovar Typhimurium encodes an accessory toxin protein, STM14_4640, which we renamed as RcaT. RcaT is neutralized by the reverse transcriptase-msDNA antitoxin complex, and becomes active upon perturbation of msDNA biosynthesis. The reverse transcriptase is required for binding to RcaT, and the msDNA is required for the antitoxin activity. The highly prevalent RcaT-containing retron family constitutes a new type of tripartite DNA-containing toxin-antitoxin system. To understand the physiological roles of such toxin-antitoxin systems, we developed toxin activation-inhibition conjugation (TAC-TIC), a high-throughput reverse genetics approach that identifies the molecular triggers and blockers of toxin-antitoxin systems. By applying TAC-TIC to Retron-Sen2, we identified multiple trigger and blocker proteins of phage origin. We demonstrate that phage-related triggers directly modify the msDNA, thereby activating RcaT and inhibiting bacterial growth. By contrast, prophage proteins circumvent retrons by directly blocking RcaT. Consistently, retron toxin-antitoxin systems act as abortive infection anti-phage defence systems, in line with recent reports3,4. Thus, RcaT retrons are tripartite DNA-regulated toxin-antitoxin systems, which use the reverse transcriptase-msDNA complex both as an antitoxin and as a sensor of phage protein activities.


Subject(s)
Antitoxins , Bacteriophages , Retroelements , Salmonella typhimurium , Toxin-Antitoxin Systems , Antitoxins/genetics , Bacteriophages/metabolism , DNA, Bacterial/genetics , DNA, Single-Stranded/genetics , Nucleic Acid Conformation , Prophages/metabolism , RNA-Directed DNA Polymerase/metabolism , Retroelements/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/growth & development , Salmonella typhimurium/virology , Toxin-Antitoxin Systems/genetics
2.
Nat Microbiol ; 5(9): 1119-1133, 2020 09.
Article in English | MEDLINE | ID: mdl-32514074

ABSTRACT

The interplay between host and pathogen relies heavily on rapid protein synthesis and accurate protein targeting to ensure pathogen destruction. To gain insight into this dynamic interface, we combined Click chemistry with pulsed stable isotope labelling of amino acids in cell culture to quantify the host proteome response during macrophage infection with the intracellular bacterial pathogen Salmonella enterica Typhimurium. We monitored newly synthesized proteins across different host cell compartments and infection stages. Within this rich resource, we detected aberrant trafficking of lysosomal proteases to the extracellular space and the nucleus. We verified that active cathepsins re-traffic to the nucleus and that these are linked to cell death. Pharmacological cathepsin inhibition and nuclear targeting of a cellular cathepsin inhibitor (stefin B) suppressed S. enterica Typhimurium-induced cell death. We demonstrate that cathepsin activity is required for pyroptotic cell death via the non-canonical inflammasome, and that lipopolysaccharide transfection into the host cytoplasm is sufficient to trigger active cathepsin accumulation in the host nucleus and cathepsin-dependent cell death. Finally, cathepsin inhibition reduced gasdermin D expression, thus revealing an unexpected role for cathepsin activity in non-canonical inflammasome regulation. Overall, our study illustrates how resolution of host proteome dynamics during infection can drive the discovery of biological mechanisms at the host-microbe interface.


Subject(s)
Cathepsins/metabolism , Cell Death/physiology , Macrophages/metabolism , Proteomics , Salmonella Infections/metabolism , Salmonella typhimurium/metabolism , Animals , Cathepsins/drug effects , Cell Death/drug effects , Cystatin B/antagonists & inhibitors , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/metabolism , Lysosomes/metabolism , Macrophages/microbiology , Mice , Peptide Hydrolases/metabolism , Phosphate-Binding Proteins/metabolism , Proteome , RAW 264.7 Cells , Salmonella Infections/microbiology
3.
mSystems ; 5(2)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32127419

ABSTRACT

The molecular architecture and function of the Gram-negative bacterial cell envelope are dictated by protein composition and localization. Proteins that localize to the inner membranes (IM) and outer membranes (OM) of Gram-negative bacteria play critical and distinct roles in cellular physiology; however, approaches to systematically interrogate their distribution across both membranes and the soluble cell fraction are lacking. Here, we employed multiplexed quantitative mass spectrometry using tandem mass tag (TMT) labeling to assess membrane protein localization in a proteome-wide fashion by separating IM and OM vesicles from exponentially growing Escherichia coli K-12 cells on a sucrose density gradient. The migration patterns for >1,600 proteins were classified in an unbiased manner, accurately recapitulating decades of knowledge in membrane protein localization in E. coli For 559 proteins that are currently annotated as peripherally associated with the IM (G. Orfanoudaki and A. Economou, Mol Cell Proteomics 13:3674-3687, 2014, https://doi.org/10.1074/mcp.O114.041137) and that display potential for dual localization to either the IM or cytoplasm, we could allocate 110 proteins to the IM and 206 proteins to the soluble cell fraction based on their fractionation patterns. In addition, we uncovered 63 cases, in which our data disagreed with current localization annotation in protein databases. For 42 of these cases, we were able to find supportive evidence for our localization findings in the literature. We anticipate that our systems-level analysis of the E. coli membrane proteome will serve as a useful reference data set to query membrane protein localization, as well as to provide a novel methodology to rapidly and systematically map membrane protein localization in more poorly characterized Gram-negative species.IMPORTANCE Current knowledge of protein localization, particularly outer membrane proteins, is highly dependent on bioinformatic predictions. To date, no systematic experimental studies have directly compared protein localization spanning the inner and outer membranes of E. coli By combining sucrose density gradient fractionation of inner membrane (IM) and outer membrane (OM) proteins with multiplex quantitative proteomics, we systematically quantified localization patterns for >1,600 proteins, providing high-confidence localization annotations for 1,368 proteins. Of these proteins, we resolve the predominant localization of 316 proteins that currently have dual annotation (cytoplasmic and IM) in protein databases and identify new annotations for 42 additional proteins. Overall, we present a novel quantitative methodology to systematically map membrane proteins in Gram-negative bacteria and use it to unravel the biological complexity of the membrane proteome architecture in E. coli.

4.
Nucleic Acids Res ; 43(Database issue): D240-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25399418

ABSTRACT

The Orthologous Matrix (OMA) project is a method and associated database inferring evolutionary relationships amongst currently 1706 complete proteomes (i.e. the protein sequence associated for every protein-coding gene in all genomes). In this update article, we present six major new developments in OMA: (i) a new web interface; (ii) Gene Ontology function predictions as part of the OMA pipeline; (iii) better support for plant genomes and in particular homeologs in the wheat genome; (iv) a new synteny viewer providing the genomic context of orthologs; (v) statically computed hierarchical orthologous groups subsets downloadable in OrthoXML format; and (vi) possibility to export parts of the all-against-all computations and to combine them with custom data for 'client-side' orthology prediction. OMA can be accessed through the OMA Browser and various programmatic interfaces at http://omabrowser.org.


Subject(s)
Databases, Protein , Plant Proteins/genetics , Proteome/chemistry , Sequence Homology, Amino Acid , Algorithms , Gene Ontology , Genome, Plant , Humans , Internet , Plant Proteins/chemistry , Proteome/genetics , Synteny , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...