Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Anal Methods ; 16(16): 2478-2488, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38606568

ABSTRACT

The demand for monitoring anthropogenic U isotopes, 236U and 233U, in seawater will continue to increase due to radioecological issues and the need for tools for environmental dynamics research. In response to this growing demand, herein, a novel and simple method was developed for the collection of U isotopes in seawater, both in the laboratory and field, using a fabric-like amidoxime adsorbent. The results from the adsorption studies showed that the optimum conditions for processing seawater in a glass beaker were as follows: seawater pH 4, amidoxime adsorbent 0.20 mmol per 500 g seawater and an adsorption time of 9 hours. Alternatively, when using a closed polyethylene container in experiments on-board a ship and using the same ratio of adsorbent to seawater as in the beaker experiment in the laboratory, the optimum conditions were as follows: seawater pH 8 and an adsorption time of 24 hours. Under the above-mentioned conditions, more than 95% of the U underwent adsorption in both the beaker and the polyethylene container experiments. In the case of analyte desorption, more than 80% of U in seawater was recovered using 2-3 mol dm-3 HCl or HNO3 as the eluent. Thus, it was concluded that the amidoxime adsorbent can serve as a simple and effective pre-concentration method for the ultra-trace monitoring of U isotopes in seawater.

2.
Heliyon ; 9(4): e14153, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025796

ABSTRACT

The long-lived U isotopes, 233U and 236U, have been used increasingly in recent years as marine circulation tracers and for identifying sources of uranium contamination in the environment. The sedimentation histories of these two U isotopes in combination with natural 238U were reconstructed for an anoxic sediment core collected from Beppu Bay, Japan, in the western North Pacific Ocean showing good time resolution (less than 2.6 y/sample). The 233U/236U atom ratio showed a prominent peak of (3.20 ± 0.30) × 10-2 around 1957 which can be attributed to the input from atmospheric nuclear weapons tests including thermonuclear tests conducting in the Equatorial Pacific. The integrated 233U/236U ratio of (1.64 ± 0.08) × 10-2 for the sediment was found to be in relatively good agreement with the representative ratio published for global fallout (∼1.4 × 10-2). A prominent increase in the authigenic ratio of 233U/238Ua,s in the leached fraction (1.39 ± 0.11 × 10-11) and the bulk digestion (1.36 ± 0.10 × 10-11) was also observed around 1957. This reflects the input supply of 233U to the seawater which is known to have a relatively constant 238U content. The authigenic 236U/238Ua,s ratio (0.18 ± 0.02 × 10-9) obtained for 1921 increased from the early 1950's to a maximum of (6.59 ± 0.60) × 10-9 around 1962. The variation in this ratio represents well the introduction history of U into the surface environment without site-specific U contamination and the time profile is also consistent with the 137Cs signature. This work thus provides a benchmark for the long-term use of the isotopic U composition as an input parameter for seawater circulation tracers and as a chronological marker for anoxic sediments and sedimentary rocks. Especially the 233U/236U ratio may serve as a key-marker for the new geological age Anthropocene.

3.
J Environ Radioact ; 246: 106846, 2022 May.
Article in English | MEDLINE | ID: mdl-35240395

ABSTRACT

Behavior of radiocesium in Fukushima after its deposition is mainly controlled by mobility of soil components, of which the density is one of the parameters governing the mobility; however, little information is available on the density of soil components associated with radiocesium in environment. Furthermore, the reduction of the volume of radiocesium-contaminated soil in the interim storage is highly demanded. In this study, we developed a gravitational separation method using a sodium polytungstate (SPT) solution combined with size fractionation to understand the relation between 137Cs activity and the density of surface soil components and evaluate the feasibility of the method for the volume reduction of the contaminated soil. In all soil samples examined, 137Cs concentration of the small size (<0.063 mm) and high-density (2.4-2.8 g cm-3) fraction was the highest among the separated fractions, whereas most of the radiocesium-rich micro-particles were distributed in the small size (<0.063 mm) and low density (<2.4 g cm-3) fraction. Although ultrasonication improved the size separation efficiency, a single-step gravitational separation method using an SPT solution with a density of 2.4 g cm-3 without size separation and ultrasonication revealed that the 137Cs concentration on 50°C-dry weight basis in the dense (>2.4 g cm-3) fraction was 25.6-82.7% lower than that of the bulk sample for all soil samples. In particular, for the samples with a bulk 137Cs concentration of 29.6 Bq g-1 50°C-dry weight, the 137Cs concentration in the fraction was below the safety treatment requirement (i.e., 8 Bq g-1). Therefore, single-step gravitational separation may be used for the volume reduction of contaminated soils.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive , Cesium Radioisotopes/analysis , Japan , Soil , Soil Pollutants, Radioactive/analysis
4.
J Hazard Mater ; 401: 123364, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32763681

ABSTRACT

A massive amount of soils and inflammable materials of plants etc. contaminated by radiocesium are generated from decontamination work in the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident affected area. In present study, the removal experiments of 137Cs in a soil collected from the FDNPP accident affected area were carried out in a lab-scale electrical heating horizontal furnace through thermal treatment with CaCl2 addition over a temperature of 900 - 1300 °C. The results indicated that the average radioactive concentration of 137Cs in the soil was 52.8 Bq/g. The removal ratio of 137Cs in the soil treated at 1300 °C was 96.3 % when 20 % CaCl2 was added. The addition of CaCl2 and CaO mixture exhibited a synergistic effect on the removal of 137Cs, relative to the addition of CaCl2 alone. Accordingly, the addition of CaCl2 or its mixture with CaO during thermal treatment is suggested to remove 137Cs in the soil collected from the FDNPP accident affected area. Additionally, segregation of the soil sample to fine and coarse fraction and then treated individually are also recommended.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive , Water Pollutants, Radioactive , Calcium Chloride , Cesium Radioisotopes , Japan , Nuclear Power Plants , Soil , Water Pollutants, Radioactive/analysis
5.
Sci Rep ; 10(1): 22056, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328563

ABSTRACT

The structural form and elemental distribution of material originating from different Fukushima Daiichi Nuclear Power Plant reactors (Units 1 and 3) is hereby examined to elucidate their contrasting release dynamics and the current in-reactor conditions to influence future decommissioning challenges. Complimentary computed X-ray absorption tomography and X-ray fluorescence data show that the two suites of Si-based material sourced from the different reactor Units have contrasting internal structure and compositional distribution. The known event and condition chronology correlate with the observed internal and external structures of the particulates examined, which suggest that Unit 1 ejecta material sustained a greater degree of melting than that likely derived from reactor Unit 3. In particular, we attribute the near-spherical shape of Unit 1 ejecta and their internal voids to there being sufficient time for surface tension to round these objects before the hot (and so relatively low viscosity) silicate melt cooled to form glass. In contrast, a more complex internal form associated with the sub-mm particulates invoked to originate from Unit 3 suggest a lower peak temperature, over a longer duration. Using volcanic analogues, we consider the structural form of this material and how it relates to its environmental particulate stability and the bulk removal of residual materials from the damaged reactors. We conclude that the brittle and angular Unit 3 particulate are more susceptible to further fragmentation and particulate generation hazard than the round, higher-strength, more homogenous Unit 1 material.

6.
Anal Sci ; 36(5): 631-635, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32092734

ABSTRACT

Environmental contaminations of 129I were continuously monitored in various sample preparation rooms for accelerator mass spectrometry at the University of Tsukuba. Monitoring of 129I was performed in the rooms used for the treatment of samples in the past, in order to compare with the results obtained in the sample preparation rooms. Ambient levels of atmospheric 129I in each room were estimated from the measured concentrations in the alkali trap solutions. This article reports the results of one year of monitoring the temporal changes of stable iodine (127I) and 129I contamination rates in the alkali trap solutions. It was found that 129I contamination rates were lower than approximately 104 atoms cm-2 day-1 in the rooms where ether no samples or only samples with environmental background levels of 129I were handled. Values from 104 to 105 atoms cm-2 day-1 were recorded in another room where environmental samples, such as the samples derived from nuclear power plant accidents, were treated. Higher levels of 129I, ranging from 106 to 107 atoms cm-2 day-1, were recorded in rooms used for treating neutron-activated iodine. The experimental results show that the 129I level depended on the 129I sample-preparation histories for the respective rooms. It is possible to estimate the 129I contamination risk from the atmosphere to the samples by knowing the 129I level in the preparation room.

7.
Sci Rep ; 10(1): 1636, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005927

ABSTRACT

Both the three-dimensional internal structure and elemental distribution of near-field radioactive fallout particulate material released during the March 2011 accident at the Fukushima Daiichi Nuclear Power Plant is analysed using combined high-resolution laboratory and synchrotron radiation x-ray techniques. Results from this study allow for the proposition of the likely formation mechanism of the particles, as well as the potential risks associated with their existence in the environment, and the likely implications for future planned reactor decommissioning. A suite of particles is analyzed from a locality 2 km from the north-western perimeter of the site - north of the primary contaminant plume in an area formerly attributed to being contaminated by fallout from reactor Unit 1. The particles are shown to exhibit significant structural similarities; being amorphous with a textured exterior, and containing inclusions of contrasting compositions, as well as an extensive internal void volume - bimodal in its size distribution. A heterogeneous distribution of the various elemental constituents is observed inside a representative particle, which also exhibited a Fukushima-derived radiocesium (134Cs, 135Cs and 137Cs) signature with negligible natural Cs. We consider the structure and composition of the particle to suggest it formed from materials associated with the reactor Unit 1 building explosion, with debris fragments embedded into the particles surface. Such a high void ratio, comparable to geological pumice, suggests such material formed during a rapid depressurisation and is potentially susceptible to fragmentation through attrition.


Subject(s)
Cesium Radioisotopes/chemistry , Radioactive Fallout/analysis , Dust/analysis , Fukushima Nuclear Accident , Japan , Nuclear Power Plants , Radiation Monitoring/methods , Radiography/methods , Soil Pollutants, Radioactive , Synchrotrons , Water Pollutants, Radioactive/analysis , X-Rays
8.
Anal Sci ; 36(2): 247-251, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31564679

ABSTRACT

For accurately determining nutrients in seawater by continuous flow analysis (CFA), the characteristic of the calibration curve was examined in detail. Under absorbance below 0.8, the calibration curve and the bracketing methods showed more accurate results that the bias fell below 0.5%. The analytical results of dissolved silica in seawater from the nutrient maximum layer of the Pacific Ocean obtained by the proposed methods showed good agreement with those obtained by an ion exclusion chromatography postcolumn absorption spectrophotometry (IEC-postcolumn) and an ion exclusion chromatography isotope dilution ICP mass spectrometry (IEC-ID-ICP-MS). From the results, the analysis of nutrients in seawater could be accurately carried out by CFA with an expanded uncertainty of below 1% using both the calibration curve and the bracketing methods with an appropriate absorbance range.

9.
Environ Sci Technol ; 53(10): 5868-5876, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31034221

ABSTRACT

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident released abundant radioactive particles into the surrounding environment. Herein, we analyzed the activity of 90Sr in these particles to estimate the contribution of this radionuclide to the overall radiation exposure and shed light on the processes that occurred during the accident. Seven radioactive particles were isolated from the dust and soil samples collected from areas surrounding the FDNPP, and the minimum/maximum 137Cs activities were determined as 224/4,100 Bq. Based on the size, specific activity, and 134Cs/137Cs activity ratios, we concluded that six of the seven radioactive particles were released from the Unit 1 reactor, while one particle was released from the Unit 3 reactor by a hydrogen explosion. Strontium-90 was detected in all radioactive particles, and the minimal/maximal 90Sr activities were determined as 0.046/1.4 Bq. 137Cs/90Sr activity ratios above 1000 were observed for all seven particles, that is, compared to 137Cs, 90Sr had negligible contribution to the overall radiation exposure. The 137Cs/90Sr activity ratios of the radioactive particles were similar to those of terrestrial environmental samples and were higher for particles released from the Unit 1 reactor than for samples collected from the Unit 1 reactor building, which indicates possibility of additional 90Sr-rich contamination after release of the particles.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Radioactive Fallout , Soil Pollutants, Radioactive , Cesium Radioisotopes , Dust , Japan , Nuclear Power Plants
10.
Mar Environ Res ; 142: 91-99, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30290965

ABSTRACT

The anthropogenic long-lived radionuclide 129I is receiving increased attraction as a new oceanic tracer in addition to usage as a fingerprint of radionuclide contamination of the marine environment. To demonstrate the robustness of 129I as an oceanic tracer in the Northwest Pacific area, specifically in the Japan Sea, the input history of 129I to surface seawater was reconstructed using a hermatypic coral core sample from Iki Island in the Tsushima strait. Iodine isotopes in each annual band were measured using AMS and ICP-MS after appropriate pre-treatments of small amounts of coral powder. The 129I/127I ratios in the 1940s were almost at background levels (<1 × 10-11) and increased abruptly in the early 1950s. Thereafter, the ratios continuously increased with some fluctuations; the maximum ratio, 7.13 ±â€¯0.72 × 10-11, being found in the late 1990s. After that period, the ratios remained nearly constant until the present time (2011). The 129I originated mainly from the nuclear weapons testings of the 1950s and the early 1960s, and from airborne releasing by nuclear reprocessing facilities. The dataset obtained here was used to construct a simple model to estimate the diffusion coefficient of 129I in the Japan Sea. The 129I/236U ratios over the observation period were also reconstructed to help constraining sources of 129I to the marine environment. Based on the results, the 129I/236U ratio obtained here could be an endmember of the water mass in the Kuroshio Current area of the Northwest Pacific Ocean.


Subject(s)
Anthozoa/chemistry , Models, Theoretical , Seawater/chemistry , Water Pollutants, Radioactive/analysis , Animals , Anthozoa/metabolism , Japan , Nuclear Weapons , Pacific Ocean , Time Factors
11.
J Colloid Interface Sci ; 530: 473-480, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29990783

ABSTRACT

In order to achieve the highly efficient 99mTc production from 100MoO3 by the 100Mo(n, 2n)99Mo reaction, we have developed a new protocol to synthesize nano-sized Mo particles, of which the size was controlled by the inner space of the liposomes. Calcium and molybdate ions were encapsulated into ∼100 nm size liposomes. The liposome suspensions were then mixed and heated to promote the membrane fusion. As a result, the insoluble CaMoO4 nanoparticles precipitated inside the liposomes. The median particle diameter of 168 nm and average diameter of 169 ±â€¯56 nm (n = 109) were obtained from an SEM image, and the particles have a powellite-structure. The formation process of the particles was then examined. The formation of nano-sized CaMoO4 was observed by the high resolution TEM image and TEM image of negative-stained liposome. At the room temperature, the fusion of liposome did not occur significantly. These results suggest that nanocrystals of the CaMoO4 were likely formed in the liposomes because of the liposome fusion and aggregated during the drying processes of reaction solution.


Subject(s)
Calcium/chemistry , Lecithins/chemistry , Liposomes/chemistry , Molybdenum/chemistry , Nanoparticles/chemistry , Oxygen/chemistry , Chemical Precipitation , Eggs/analysis , Lipid Bilayers/chemistry , Liposomes/ultrastructure , Membrane Fusion , Nanoparticles/ultrastructure , Particle Size , Phosphatidylcholines/chemistry
12.
Article in English | MEDLINE | ID: mdl-30050004

ABSTRACT

Evaluation of radiation exposure from diet is necessary under the assumption of a virtual accident as a part of emergency preparedness. Here, we developed a model with complete consideration of the regional food trade using deposition data simulated by a transport model, and estimated the dietary intake of radionuclides and the effectiveness of regulation (e.g., restrictions on the distribution of foods) after the Fukushima accident and in virtual accident scenarios. We also evaluated the dilution factors (i.e., ratios of contaminated foods to consumed foods) and cost-effectiveness of regulation as basic information for setting regulatory values. The doses estimated under actual emission conditions were generally consistent with those observed in food-duplicate and market-basket surveys within a factor of three. Regulation of restricted food distribution resulted in reductions in the doses of 54⁻65% in the nearest large city to the nuclear power plant. The dilution factors under actual emission conditions were 4.4% for radioiodine and 2.7% for radiocesium, which are ~20 times lower than those used in the Japanese provisional regulation values after the Fukushima accident. Strict regulation worsened the cost-effectiveness for both radionuclides. This study highlights the significance and utility of the developed model for a risk analysis of emergency preparedness and regulation.


Subject(s)
Computer Simulation , Food Contamination, Radioactive/prevention & control , Fukushima Nuclear Accident , Radiation Exposure/prevention & control , Radiation Monitoring/methods , Food Contamination, Radioactive/analysis , Humans , Japan , Nuclear Power Plants , Radiation Exposure/analysis , Risk , Water Pollutants, Radioactive/analysis
13.
Chemosphere ; 187: 212-220, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28850907

ABSTRACT

Following the Fukushima Dai-ichi Nuclear Power Station accident, regional road dust, heavily contaminated with radiocesium, now represents a potential source of radiocesium pollution in river water. To promote effective countermeasures for reducing the risk from radiocesium pollution, it is important to understand its sources. This study evaluated the utility of metals, including Al, Fe, and Zn as road dust tracers, and applied them to analyze sources of 137Cs in rivers around Fukushima during wet weather. Concentrations of Zn in road dust were higher than agricultural and forest soils, whereas concentrations of Fe and Al were the opposite. Concentrations of Zn were weakly but significantly correlated with benzothiazole, a molecular marker of tires, indicating Zn represents an effective tracer of road dust. Al, Fe, and Zn were frequently detected in suspended solids in river water during wet weather. Distribution coefficients of these metals and 137Cs exceeded 104, suggesting sorptive behavior in water. Although concentrations of Al, Fe, Zn, and 137Cs were higher in fine fractions of road dust and soils than in coarse fractions, use of ratios of 137Cs to Al, Fe, or Zn showed smaller differences among size fractions. The results demonstrate that combinations of these metals and 137Cs are useful for analyzing sources of radiocesium in water. These ratios in river water during wet weather were found to be comparable with or lower than during dry weather and were closer to soils than road dust, suggesting a limited contribution from road dust to radiocesium pollution in river water.


Subject(s)
Cesium Radioisotopes/analysis , Dust/analysis , Water Pollutants, Radioactive/analysis , Fukushima Nuclear Accident , Japan , Metals, Heavy/analysis , Radiation Monitoring , Rivers/chemistry , Weather
14.
Environ Sci Technol ; 50(24): 13328-13334, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27993040

ABSTRACT

The vaporization mechanisms of water-insoluble Cs in raw ash and Cs-doped ash during thermal treatment with CaCl2 addition was systematically examined in a lab-scale electrical heating furnace over a temperature range of 500-1500 °C. The results indicate that the water-insoluble Cs in the ash was associated with aluminosilicate as pollucite. Addition of 10% CaCl2 caused the maximum vaporization ratio of Cs in the raw ash to reach approximately 80% at temperatures higher than 1200 °C, whereas approximately 95% of Cs was vaporized at temperatures higher than 1300 °C when 30% CaCl2 was added. The formation of an intermediate compound, CsCaCl3, through the chemical reaction of Cs with CaCl2 was responsible for Cs vaporization by means of the subsequent decomposition of this intermediate upon the increase in temperature. The indirect chlorination of Cs by the gaseous chlorine released from the decomposition of CaCl2 was insignificant. A high CaCl2 content in the resulting annealed products with 30% CaCl2 addition delayed the decomposition of CsCaCl3 and thus lowered the Cs vaporization ratio compared to that with 10% CaCl2 addition at 900-1250 °C. Thermal treatment with CaCl2 addition is a proposed method to remove Cs from Cs-contaminated incineration ash.


Subject(s)
Calcium Chloride , Coal Ash/chemistry , Incineration , Volatilization , Water
15.
Water Res ; 92: 87-93, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26841232

ABSTRACT

After the 2011 nuclear accident in Fukushima, radiocesium was released from the Fukushima Dai-ichi Nuclear Power Plant and contaminated waters in urban areas near Tokyo. By intensive field monitoring during 3 years, this study investigated the temporal trends and the occurrence of radiocesium during dry and wet weather, and analyzed the variations in radiocesium during rainfall events and factors controlling them. Concentrations of particulate radiocesium decreased rapidly from May 2012 to March 2013 and reached an equilibrium in 2014. Concentrations of particulate (137)Cs during wet weather were almost double those during dry weather in the same period. In contrast to the small variations in (137)Cs concentrations in the particulate phase on a suspended solids (SS) weight basis during events, those in the dissolved phase on a liquid-volume basis fluctuated greatly, resulting in variations in the partition coefficient (apparent Kd). The apparent Kd of (137)Cs during wet weather ranged from 30,000 to 150,000 L kg(-1) and showed a significant negative correlation with SS concentrations during wet weather. Specific surface area in solids contributed to the variations in apparent Kd.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Rivers/chemistry , Water Pollutants, Radioactive/analysis , Weather , Geography , Kinetics , Particulate Matter/analysis , Time Factors , Tokyo
16.
Sci Total Environ ; 551-552: 155-62, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26874771

ABSTRACT

The migration and dispersion of radioactive Cs (mainly (134)Cs and (137)Cs) are of critical concern in the area surrounding the Fukushima Daiichi Nuclear Power Plant (FDNPP). Considerable uncertainty remains in understanding the properties and dynamics of radioactive Cs transport by surface water, particularly during rainfall-induced flood events to the ocean. Physical and chemical properties of unique estuary sediments, collected from the Kuma River, 4.0km south of the FDNPP, were quantified in this study. These were deposited after storm events and now occur as dried platy sediments on beach sand. The platy sediments exhibit median particle sizes ranging from 28 to 32µm. There is increasing radioactivity towards the bottom of the layers deposited; approximately 28 and 38Bqg(-1) in the upper and lower layers, respectively. The difference in the radioactivity is attributed to a larger number of particles associated with radioactive Cs in the lower part of the section, suggesting that radioactive Cs in the suspended soils transported by surface water has decreased over time. Sequential chemical extractions showed that ~90% of (137)Cs was strongly bound to the residual fraction in the estuary samples, whereas 60~80% of (137)Cs was bound to clays in the six paddy soils. This high concentration in the residual fraction facilitates ease of transport of clay and silt size particles through the river system. Estuary sediments consist of particles <100µm. Radioactive Cs desorption experiments using the estuary samples in artificial seawater revealed that 3.4±0.6% of (137)Cs was desorbed within 8h. More than 96% of (137)Cs remained strongly bound to clays. Hence, particle size is a key factor that determines the travel time and distance during the dispersion of (137)Cs in the ocean.


Subject(s)
Cesium Radioisotopes/analysis , Estuaries , Fukushima Nuclear Accident , Geologic Sediments/chemistry , Water Pollutants, Radioactive/analysis , Nuclear Power Plants
17.
J Environ Radioact ; 151 Pt 1: 209-217, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26492397

ABSTRACT

To evaluate the deposition density and extent of subsurface infiltration of (129)I and (137)Cs in the restricted area that was highly contaminated by the accident of Fukushima Dai-ichi Nuclear Power Plant, cumulative inventories of (129)I and (137)Cs, concentrations of (129)I and (137)Cs, and (129)I/(137)Cs ratio in 30-cm-long soil columns were compared with pre-accident levels from the same area. The cores were collected before and after the accident from locations of S-1 (4 km west of FDNPP) and S-2 (8 km west of FDNPP). Deposition densities of (129)I and (137)Cs in the soil following the accident were 0.90-2.33 Bq m(-2) and 0.80-4.04 MBq m(-2), respectively, which were 14-39 and 320-510 times larger than the pre-accident levels of (129)I (59.3-63.3 mBq m(-2)) and (137)Cs (2.51-7.88 kBq m(-2)), respectively. Approximately 90% of accident-derived (129)I and (137)Cs deposited in the 30-cm soil cores was concentrated in the surface layer from 0 to 44-95 kg m(-2) of mass depth (0-4.3-6.2 cm depth) and from 0 to 16-25 kg m(-2) of mass depth (0-1.0-3.1 cm depth), respectively. The relaxation mass depths (h0) of 10.8-11.2 kg m(-2) for (129)I estimated in the previous study were larger than those of 8.1-10.6 kg m(-2) for (137)Cs at both sites, owing to the larger infiltration depth of radioiodine mainly by the gravitational water penetration in the surface soil in our study sites. Approximately 7-9% of the accident-derived (129)I was present in the lower layer from 44 to 100 kg m(-2) (4.3-8.6 cm depth) at S-1, and from 95 to 160 kg m(-2) (6.2-10.2 cm depth) at S-2. Approximately 1% of (137)Cs seems to infiltrate deeper than (129)I in the lower layer at each site in contrast to the surface layer.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Iodine Radioisotopes/analysis , Radiation Monitoring , Soil Pollutants, Radioactive/analysis , Japan , Nuclear Power Plants , Seasons
18.
J Environ Radioact ; 136: 30-5, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24878717

ABSTRACT

In 2011, a large radioactive discharge occurred at the Fukushima Daiichi nuclear power plant. This plant is located within a climatically temperate region where outdoor swimming pools are popular. Although it is relatively easy to decontaminate pools by refilling them with fresh water, it is difficult to maintain safe conditions given highly contaminated diurnal dust falls from the surrounding contaminated ground. Our objectives in this paper were to conduct daily radioactivity measurements, to determine the quantity of radioactive contaminants from the surrounding environment that invade outdoor pools, and to investigate the efficacy of traditional pool cleaners in removing radioactive contaminants. The depositions in the paper filterable particulates ranged from 0 to 62,5 Bq/m(2)/day, with the highest levels found in the southern Tohoku District containing Fukushima Prefecture and in the Kanto District containing Tokyo Metro. They were approximately correlated with the ground contamination. Traditional pool cleaners eliminated 99% of contaminants at the bottom of the pool, reducing the concentration to 41 Bq/m(2) after cleaning. Authors recommended the deposition or the blown radionuclides into outdoor swimming pools must be considered into pool regulations when the environments exactly polluted with radionuclides.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Swimming Pools , Water Pollutants, Radioactive/analysis , Water Pollution, Radioactive/analysis , Water Pollution, Radioactive/prevention & control , Decontamination , Japan , Radiation Protection , Swimming Pools/standards , Tokyo
19.
Proc Natl Acad Sci U S A ; 108(49): 19526-9, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-22084070

ABSTRACT

A tremendous amount of radioactivity was discharged because of the damage to cooling systems of nuclear reactors in the Fukushima No. 1 nuclear power plant in March 2011. Fukushima and its adjacent prefectures were contaminated with fission products from the accident. Here, we show a geographical distribution of radioactive iodine, tellurium, and cesium in the surface soils of central-east Japan as determined by gamma-ray spectrometry. Especially in Fukushima prefecture, contaminated area spreads around Iitate and Naka-Dori for all the radionuclides we measured. Distributions of the radionuclides were affected by the physical state of each nuclide as well as geographical features. Considering meteorological conditions, it is concluded that the radioactive material transported on March 15 was the major contributor to contamination in Fukushima prefecture, whereas the radioactive material transported on March 21 was the major source in Ibaraki, Tochigi, Saitama, and Chiba prefectures and in Tokyo.


Subject(s)
Earthquakes , Radioactive Fallout/analysis , Radioactive Hazard Release , Radioisotopes/analysis , Cesium Radioisotopes/analysis , Geography , Iodine Radioisotopes/analysis , Japan , Nuclear Reactors , Soil/analysis , Soil Pollutants, Radioactive/analysis , Spectrometry, Gamma
20.
J Am Chem Soc ; 126(16): 5219-24, 2004 Apr 28.
Article in English | MEDLINE | ID: mdl-15099106

ABSTRACT

Fluoride complexation of element 104, rutherfordium (Rf), produced in the 248Cm(18O,5n)261Rf reaction has been studied by anion-exchange chromatography on an atom-at-a-time scale. The anion-exchange chromatographic behavior of Rf was investigated in 1.9-13.9 M hydrofluoric acid together with those of the group-4 elements Zr and Hf produced in the 18O-induced reactions on Ge and Gd targets, respectively. It was found that the adsorption behavior of Rf on anion-exchange resin is quite different from those of Zr and Hf, suggesting the influence of relativistic effects on the fluoride complexation of Rf.

SELECTION OF CITATIONS
SEARCH DETAIL
...