Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37205588

ABSTRACT

REV-ERBα and REV-ERBß proteins play crucial roles in linking the circadian system to overt daily rhythms in mammalian physiology and behavior. In most tissues, REV-ERBα protein robustly cycles such that it is detected only within a tight interval of 4-6 hours each day, suggesting both its synthesis and degradation are tightly controlled. Several ubiquitin ligases are known to drive REV-ERBα degradation, but how they interact with REV-ERBα and which lysine residues they ubiquitinate to promote degradation are unknown. In this study, we attempted to identify both ubiquitin-ligase-binding and ubiquitination sites within REV-ERBα required for its degradation. Surprisingly, mutating all lysine residues, the common sites for ubiquitin conjugation, in REV-ERBα to arginines (K20R), did very little to impair its degradation in cells. K20R were degraded much faster by co-expression of two E3 ligases, SIAH2 or SPSB4, suggesting possible N-terminal ubiquitination. To explore this, we examined if small deletions at the N-terminus of REV-ERBα would alter its degradation. Interestingly, deletion of amino acid (AA) residues 2 to 9 (delAA2-9) clearly resulted in a less stable REV-ERBα. We found that it was the length (i.e. 8 AA), and not the specific sequence, that confers stability in this region. Simultaneously, we also mapped the interaction site of the E3 ligase SPSB4 to this same region, specifically requiring AA4-9 of REV-ERBα. Thus, the first 9 AA of REV-ERBα has two opposing roles in regulating REV-ERBα turnover. Further, deleting eight additional AAs (delAA2-17) from the N-terminus strongly prevents REV-ERBα degradation. Combined, these results suggest that complex interactions within the first 25AAs potentially act as an endogenous 'switch' that allows REV-ERBα to exist in a stabilized conformation in order to accumulate at one time of day, but then rapidly shifts to a destabilized form, to enhance its removal at the end of its daily cycle.

2.
F1000Res ; 11: 1072, 2022.
Article in English | MEDLINE | ID: mdl-36405557

ABSTRACT

Background: The mammalian retina contains an autonomous circadian clock that controls many physiological functions within this tissue. Our previous studies have indicated that disruption of this circadian clock by removing Bmal1 from the retina affects the visual function, retinal circuitry, and cone photoreceptor viability during aging. In the present study, we employed a mouse-derived cone photoreceptor‒like cell, 661W, to investigate which molecular mechanisms of the circadian clock may modulate cone photoreceptor viability during aging. Methods: Bmal1 knockout (BKO) cells were generated from 661W cells using the CRISPR/Cas9 gene editing tool. Deletion of Bmal1 from 661W was verified by western blot and monitoring Per2-luc bioluminescence circadian rhythms. To investigate the effect of Bmal1 removal on an oxidative stress challenge, cells were treated with hydrogen peroxide (H 2O 2,1 mM) for two hours and then cell viability was assessed. Cells were also cultured and harvested for gene expression analysis and antioxidant assay. Results: Our data indicated that 661W cells contain a functional circadian clock that mediates the response to an oxidative stress challenge in vitro and that such a response is no longer present in the BKO cell. We also hypothesized that the effect was due to the circadian regulation of the intracellular antioxidant defense mechanism. Our results revealed that in 661W cells, the antioxidant defense mechanism showed time dependent variation , whereas in BKO cells, there was an overall reduction in this antioxidant defense mechanism, and it no longer showed time dependent variation. Conclusions: Our work supported the notion that the presence of a functional circadian clock and its ability to modulate the response to an oxidative stress is the underlying mechanism that may protect cones during aging.


Subject(s)
Circadian Clocks , Glutathione Peroxidase , Oxidative Stress , Retinal Cone Photoreceptor Cells , Animals , Mice , Cell Line , Glutathione Peroxidase/metabolism , Aging
3.
PLoS Genet ; 18(7): e1010305, 2022 07.
Article in English | MEDLINE | ID: mdl-35789210

ABSTRACT

Circadian clocks enable organisms to predict and align their behaviors and physiologies to constant daily day-night environmental cycle. Because the ubiquitin ligase Siah2 has been identified as a potential regulator of circadian clock function in cultured cells, we have used SIAH2-deficient mice to examine its function in vivo. Our experiments demonstrate a striking and unexpected sexually dimorphic effect of SIAH2-deficiency on the regulation of rhythmically expressed genes in the liver. The absence of SIAH2 in females, but not in males, altered the expression of core circadian clock genes and drastically remodeled the rhythmic transcriptome in the liver by increasing the number of day-time expressed genes, and flipping the rhythmic expression from nighttime expressed genes to the daytime. These effects are not readily explained by effects on known sexually dimorphic pathways in females. Moreover, loss of SIAH2 in females, not males, preferentially altered the expression of transcription factors and genes involved in regulating lipid and lipoprotein metabolism. Consequently, SIAH2-deficient females, but not males, displayed disrupted daily lipid and lipoprotein patterns, increased adiposity and impaired metabolic homeostasis. Overall, these data suggest that SIAH2 may be a key component of a female-specific circadian transcriptional output circuit that directs the circadian timing of gene expression to regulate physiological rhythms, at least in the liver. In turn, our findings imply that sex-specific transcriptional mechanisms may closely interact with the circadian clock to tailor overt rhythms for sex-specific needs.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Female , Lipids , Lipoproteins , Male , Mice , Ubiquitin , Ubiquitin-Protein Ligases/genetics
4.
Mol Vis ; 25: 791-799, 2019.
Article in English | MEDLINE | ID: mdl-31819341

ABSTRACT

Purpose: Melatonin signaling plays an important role in the modulation of retinal physiology and photoreceptor viability during aging. In this study, we investigated whether 661W cells-a photoreceptor-like cell that endogenously expresses melatonin receptor type 1 (MT1) and melatonin receptor type 2 (MT2) receptors-represent a useful model for studying the biology of heterodimerization and signaling of MT1/2 receptors. Methods: 661W cells were cultured, and MT1/MT2 heterodimerization in 661W cells was assessed with proximity ligation assay. MT2 was removed from the 661W cells using the MT2-CRISPR/Cas9 system. Melatonin receptor signaling was investigated by measuring cAMP levels and activation of the AKT-FoxO1 pathway. Results: The results demonstrated that heterodimerization of MT1 and MT2 receptors occurs in 661W cells. The pathways activated by MT1/MT2 heterodimer (MT1/2h) in 661W cells are similar to those previously reported in mouse photoreceptors. Disruption of the heterodimer formation by genetically ablating MT2 from 661W cells abolished the activation of melatonin signaling in these cells. Conclusions: The data indicated that in 661W cells, MT1 and MT2 receptors are functional only when they are associated in a heteromeric complex, as occurs in mouse photoreceptors. 661W cells represent a useful model for studying the mechanism underlying MT1/MT2 heterodimerization.


Subject(s)
Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/metabolism , Protein Multimerization , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Animals , Cell Line , Cyclic AMP/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Melatonin/administration & dosage , Melatonin/pharmacology , Mice , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
5.
J Biol Rhythms ; 34(6): 610-621, 2019 12.
Article in English | MEDLINE | ID: mdl-31607207

ABSTRACT

The time-dependent degradation of core circadian clock proteins is essential for the proper functioning of circadian timekeeping mechanisms that drive daily rhythms in gene expression and, ultimately, an organism's physiology. The ubiquitin proteasome system plays a critical role in regulating the stability of most proteins, including the core clock components. Our laboratory developed a cell-based functional screen to identify ubiquitin ligases that degrade any protein of interest and have started screening for those ligases that degrade circadian clock proteins. This screen identified Spsb4 as a putative novel E3 ligase for RevErbα. In this article, we further investigate the role of Spsb4 and its paralogs in RevErbα stability and circadian rhythmicity. Our results indicate that the paralogs Spsb1 and Spsb4, but not Spsb2 and Spsb3, can interact with and facilitate RevErbα ubiquitination and degradation and regulate circadian clock periodicity.


Subject(s)
CLOCK Proteins/genetics , Circadian Clocks/genetics , Gene Expression Regulation , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Cell Line , Circadian Rhythm/genetics , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitination
6.
BMC Biol ; 13: 43, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26099272

ABSTRACT

BACKGROUND: Daily rhythms in mammals are programmed by a master clock in the suprachiasmatic nucleus (SCN). The SCN contains two main compartments (shell and core), but the role of each region in system-level coordination remains ill defined. Herein, we use a functional assay to investigate how downstream tissues interpret region-specific outputs by using in vivo exposure to long day photoperiods to temporally dissociate the SCN. We then analyze resulting changes in the rhythms of clocks located throughout the brain and body to examine whether they maintain phase synchrony with the SCN shell or core. RESULTS: Nearly all of the 17 tissues examined in the brain and body maintain phase synchrony with the SCN shell, but not the SCN core, which indicates that downstream oscillators are set by cues controlled specifically by the SCN shell. Interestingly, we also found that SCN dissociation diminished the amplitude of rhythms in core clock gene and protein expression in brain tissues by 50-75 %, which suggests that light-driven changes in the functional organization of the SCN markedly influence the strength of rhythms in downstream tissues. CONCLUSIONS: Overall, our results reveal that body clocks receive time-of-day cues specifically from the SCN shell, which may be an adaptive design principle that serves to maintain system-level phase relationships in a changing environment. Further, we demonstrate that lighting conditions alter the amplitude of the molecular clock in downstream tissues, which uncovers a new form of plasticity that may contribute to seasonal changes in physiology and behavior.


Subject(s)
Brain/physiology , Circadian Clocks , Neurons/cytology , Suprachiasmatic Nucleus/cytology , Animals , Brain/cytology , Circadian Rhythm , Light , Male , Mice, Inbred C57BL , Neurons/physiology , Photoperiod
7.
Toxicol Appl Pharmacol ; 235(2): 191-8, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19135467

ABSTRACT

Nickel compounds are carcinogenic to humans and have been shown to alter epigenetic homeostasis. The c-Myc protein controls 15% of human genes and it has been shown that fluctuations of c-Myc protein alter global epigenetic marks. Therefore, the regulation of c-Myc by nickel ions in immortalized but not tumorigenic human bronchial epithelial Beas-2B cells was examined in this study. It was found that c-Myc protein expression was increased by nickel ions in non-tumorigenic Beas-2B and human keratinocyte HaCaT cells. The results also indicated that nickel ions induced apoptosis in Beas-2B cells. Knockout of c-Myc and its restoration in a rat cell system confirmed the essential role of c-Myc in nickel ion-induced apoptosis. Further studies in Beas-2B cells showed that nickel ion increased the c-Myc mRNA level and c-Myc promoter activity, but did not increase c-Myc mRNA and protein stability. Moreover, nickel ion upregulated c-Myc in Beas-2B cells through the MEK/ERK pathway. Collectively, the results demonstrate that c-Myc induction by nickel ions occurs via an ERK-dependent pathway and plays a crucial role in nickel-induced apoptosis in Beas-2B cells.


Subject(s)
Apoptosis/drug effects , Epithelial Cells/drug effects , Extracellular Signal-Regulated MAP Kinases/physiology , Nickel/toxicity , Proto-Oncogene Proteins c-myc/physiology , Blotting, Western , Cell Line , Flow Cytometry , Genes, Reporter , Humans , Keratinocytes/drug effects , Luciferases/metabolism , RNA/biosynthesis , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , ras Proteins/genetics , ras Proteins/physiology
8.
Biochim Biophys Acta ; 1728(3): 126-34, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15777733

ABSTRACT

In contrast to hundreds of mutations found in familial breast and/or ovarian cancers, somatic mutations of BRCA1 are very rare. However, a high percentage of sporadic breast and ovarian cancers show a reduction in BRCA1 expression, suggesting that defects in transcriptional regulation is a contributing factor. BRCA1 shares a promoter with its neighboring gene, NBR2, which is transcribed in the opposite direction. We have previously shown that the transcription of BRCA1 is negatively regulated by protein factors that interact with a 36-bp segment, located 575 bp into its first intron. We now report the localization of an 18-bp transcriptional repressor element for NBR2, which resides 948 bp into its first intron. The binding of nuclear proteins to this repressor element was detected by electrophoretic mobility shift assays (EMSAs), and it conferred an orientation-dependent functional suppression onto a heterologous thymidine kinase promoter. Combined with our previous studies, a model of transcriptional regulation of the closely aligned BRCA1-NBR2 bi-directional unit is proposed. A minimal 56-bp DNA region is functional in driving transcription in both directions, while uni-directional control is provided by distinct repressors that bind to sequences located in the first intron of the respective genes.


Subject(s)
Gene Expression Regulation/genetics , Genes, BRCA1 , Models, Genetic , Neoplasm Proteins/genetics , Silencer Elements, Transcriptional/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics , Base Sequence , Cell Line, Tumor , Chromatography, Thin Layer , Electrophoretic Mobility Shift Assay , Humans , Molecular Sequence Data , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oligonucleotides , Plasmids/genetics , RNA, Long Noncoding , Sequence Analysis, DNA
9.
Hum Reprod ; 20(4): 852-63, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15705628

ABSTRACT

BACKGROUND: Uterine leiomyomas are extremely common and a major cause of pelvic pain, bleeding, infertility, and the leading indication for hysterectomy. Familial and epidemiological studies provide compelling evidence that genetic alterations play an important role in leiomyoma development. METHODS: Using Affymetrix U133A GeneChip we analysed expression profiles of 22,283 genes in paired samples of leiomyoma and adjacent normal myometrium. We compared our results with previously published data on gene expression in uterine leiomyoma and identified the overlapping gene alterations. RESULTS: We detected 80 genes with average differences of > or = 2-fold and false discovery rates of < 5% (14 overexpressed and 66 underexpressed). A comparative analysis including eight previous gene expression studies revealed eight prominent genes (ADH1, ATF3, CRABP2, CYR61, DPT, GRIA2, IGF2, MEST) identified by at least five different studies, eleven genes (ALDH1, CD24, CTGF, DCX, DUSP1, FOS, GAGEC1, IGFBP6, PTGDS, PTGER3, TYMS) reported by four studies, twelve genes (ABCA, ANXA1, APM2, CCL21, CDKN1A, CRMP1, EMP1, ESR1, FY, MAP3K5, TGFBR2, TIMP3) identified by three studies, and 40 genes reported by two different studies. CONCLUSIONS: Review of gene expression data revealed concordant changes in genes regulating retinoid synthesis, IGF metabolism, TGF-beta signaling and extracellular matrix formation. Gene expression studies provide clues to the relevant pathways of leiomyoma development.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Leiomyoma/genetics , Uterine Neoplasms/genetics , Adult , Down-Regulation , Female , Humans , Leiomyoma/etiology , Middle Aged , Oligonucleotide Array Sequence Analysis , Up-Regulation , Uterine Neoplasms/etiology
10.
Blood ; 101(12): 4966-74, 2003 Jun 15.
Article in English | MEDLINE | ID: mdl-12586625

ABSTRACT

HOX11 encodes a homeodomain protein that is aberrantly expressed in T-cell acute lymphoblastic leukemia as a consequence of the t(10;14) and t(7;10) chromosomal translocations. We previously reported that HOX11 immortalizes murine hematopoietic progenitors and induces pre-T-cell tumors in mice after long latency. It has been demonstrated in a number of studies that HOX11, similar to other homeodomain proteins, binds DNA and transactivates transcription. These findings suggest that translocation-activated HOX11 functions as an oncogenic transcription factor. Here we report that HOX11 represses transcription through both TATA-containing and TATA-less promoters. Interestingly, transcriptional repression by HOX11 is independent of its DNA binding capability. Moreover, a systematic mutational analysis indicated that repressor activity was separable from immortalizing function, which requires certain residues within the HOX11 homeodomain that make base-specific or phosphate-backbone contacts with DNA. We further showed that the pathologic action of HOX11 involves DNA binding-dependent transcriptional pathways that are distinct from those controlling expression of a chromosomal target gene (Aldh-1). We conclude that dysregulated expression of a particular set of downstream target genes by DNA binding via the homeodomain is of central importance for leukemia initiation mediated by HOX11.


Subject(s)
Cell Transformation, Neoplastic , DNA/metabolism , Homeodomain Proteins/physiology , Oncogene Proteins/physiology , 3T3 Cells , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase 1 Family , Animals , Binding Sites , Cell Differentiation , Cell Line, Transformed , Cell Transformation, Neoplastic/genetics , Female , Flow Cytometry , Gene Expression Regulation , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Immunohistochemistry , Isoenzymes/genetics , Leukemia-Lymphoma, Adult T-Cell/genetics , Mice , Mice, Inbred BALB C , Mutagenesis, Site-Directed , Mutation , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Retinal Dehydrogenase , Structure-Activity Relationship , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...