Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Biochem ; 226(2): 369-75, 1994 Dec 01.
Article in English | MEDLINE | ID: mdl-8001554

ABSTRACT

Purple acid phosphatase of the common bean Phaseolus vulgaris is a homodimeric 110-kDa glycoprotein with a Fe(III)-Zn(II) center in the active site of each monomer. After exchange of Zn(II) for Fe(II), the enzyme spectroscopically and kinetically resembles the mammalian purple acid phosphatases with Fe(III)-Fe(II) centers in monomeric 35-kDa proteins. The kidney bean enzyme consists of 432 amino acids/monomer with five N-glycosylated asparagine residues. The complete amino acid sequence was determined by a combination of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and classical sequencing methods. Our strategy involved mass determination and sequence analysis of all cyanogen-bromide-generated fragments by automated Edman degradation. Limited cleavages with cyanogen bromide were performed to obtain fragments containing still uncleaved Met-Xaa linkages. MALDI mass spectra of these products allowed the characterization of each fragment and the determination of the order of the cyanogen bromide fragments in the intact protein without producing overlapping peptides. For one large 30-kDa methionine-free fragment, the alignment of the Edman-degraded tryptic peptides was obtained by MALDI-MS analysis and enzymic microscale peptide laddering of overlapping Glu-C-generated fragments. The employed strategy shows that the classical method, in combination with modern mass spectrometry, is an attractive approach for primary structure determination in addition to the DNA sequencing method.


Subject(s)
Acid Phosphatase/chemistry , Autoanalysis , Fabaceae/enzymology , Glycoproteins/chemistry , Iron/chemistry , Mass Spectrometry/methods , Plants, Medicinal , Sequence Analysis/methods , Zinc/chemistry , Amino Acid Sequence , Binding Sites , Cyanogen Bromide , Hydroxylamine , Hydroxylamines , Molecular Sequence Data , Peptide Fragments/chemistry
2.
Eur J Biochem ; 214(1): 313-21, 1993 May 15.
Article in English | MEDLINE | ID: mdl-8508801

ABSTRACT

In order to perform Mössbauer studies, Zn(II) in the Fe(III)-Zn(II) purple acid phosphatase of the red kidney bean has been exchanged by incubating the semiapoenzyme with 57Fe(II). The resulting Fe(III)-57Fe(II) enzyme has 125% activity, compared with that of the Zn(II) enzyme. It can be oxidized by H2O2 or peroxydisulfate to the Fe(III)-57Fe(III) species with a 30-times lower activity. Incubation of the metal-free apoenzyme with 57Fe(II) in the presence of O2 leads to the 57Fe(III)-57Fe(II) species which is stable in dilute solutions, but partially oxidized during the concentration procedure to the 57Fe(III)-57Fe(III) enzyme. Limited reduction of the oxidized enzyme with ascorbate delivers a mixture of the Fe(II)-Fe(II)/Fe(III)-Fe(III) species, but not the mixed valent Fe(III)-Fe(II) species, indicating that after the transfer of the first electron the second electron of the ascorbate radical is immediately transferred to the second Fe(III). The Mössbauer spectra of the oxidized species show at 4.2 K two quadrupole doublets with delta of 0.51 mm/s and 0.53 mm/s and delta E of 1.46 and 0.96 mm/s indicating high spin Fe(III) in two different binding sites, obviously with a higher asymmetry in the chromophoric Fe(III) site. The values are too low for a mu-oxo bridge. The mixed-valent Fe(III)-Fe(II) species shows two quadrupole doublets with delta values of 0.55 mm/s and 1.14 mm/s and delta E values of 1.43 mm/s and 3.01 mm/s at 70 K for high spin Fe(II) and Fe(III), but the signal of the Fe(II) component shows magnetic patterns at 4.2 K indicating a half-integer spin system with antiferromagnetic coupling. The Fe(II)-Fe(II) system exhibits two quadrupole doublets with delta values of 1.18 mm/s and 1.22 mm/s and with delta E values of 3.69 mm/s and 2.68 mm/s again indicating a higher asymmetry in the originally chromophoric Fe(III)-binding site. Addition of phosphate shows only minor differences in the oxidized enzyme and in the mixed valent Fe(III)-Fe(II) system. Interaction with O2 is discussed.


Subject(s)
Acid Phosphatase/metabolism , Fabaceae/enzymology , Iron/metabolism , Plants, Medicinal , Zinc/metabolism , Acid Phosphatase/chemistry , Acid Phosphatase/isolation & purification , Ascorbic Acid/metabolism , Oxidation-Reduction , Phosphates/metabolism , Spectroscopy, Mossbauer
3.
J Mol Biol ; 224(2): 511-3, 1992 Mar 20.
Article in English | MEDLINE | ID: mdl-1560465

ABSTRACT

Purple acid phosphatase from red kidney bean has been crystallized from ammonium sulfate solutions in the pH range from 3.5 to 5.5. The crystal form is tetragonal bipyramidal and the largest crystals grew up to 2.0 mm long. Systematic absences indicate one of the enantiomorphic space groups P4(1)2(1)2 (92) or P4(3)2(1)2 (96) with cell dimensions a = b = 104.1(1) A and c = 308.7(2) A. The asymmetric unit contains one dimer with Mr of 110,700, determined by ultraviolet-laser desorption mass spectrometry. The crystals, with a salt-free density of 1.12 g/cm3 and a water content of 67%, diffract to 3.5 A.


Subject(s)
Acid Phosphatase/chemistry , Fabaceae/enzymology , Plants, Medicinal , Crystallization , Hydrogen-Ion Concentration , X-Ray Diffraction
4.
Eur J Biochem ; 199(1): 105-13, 1991 Jul 01.
Article in English | MEDLINE | ID: mdl-1648483

ABSTRACT

Oxidation of the reduced (pink) phosphate-free bovine spleen acid phosphatase with 1.5 mol H2O2 or sodium peroxodisulfate/mol, in the presence of Mes or Bistris pH 5, leads to a species with an absorption maximum at 558 nm. Addition of acetate or oxidation in the presence of acetate buffer engenders a species with a maximum at 550 nm. Addition of phosphate to both species shifts the maximum immediately to 540 nm; this is the species also found after preparation from the spleen. The assumption that these species represent strongly bidentate-binding hydroxo, acetato and phosphato complexes of the Fe(III)-Fe(III) system is supported by replacement reactions with other ligating oxoanions followed by their typical spectral shifts. These oxoanion complexes cannot be dissociated by gel filtration; this is possible only after reduction to the Fe(II)-Fe(III) system. The oxidized species without EPR signals below g values of 2 still reveals 5% activity which cannot be reduced to zero even in the presence of higher concentrations of peroxodisulfate. The pH optimum of the reaction with alpha-naphthyl phosphate shifts from 5.9 to 5.3 in the oxidized species. The apparent pK values around 4.5 as derived from the pH dependence of activity, of the EPR spectra, and the spectral shifts of the phosphate-saturated reduced and oxidized species are assigned to an aquo/hydroxo equilibrium at the Fe(III) or an equilibrium, where the phosphato ligand is replaced by a hydroxo ligand. A reaction mechanism is proposed in which a hydroxo ligand at the chromophoric Fe(III) attacks the phosphoric acid ester group only when that is monoprotonated and pre-oriented by electrostatic interaction with the nonchromophoric metal ion. Binding and inhibition studies with the oxoanions indicate that they compete with the catalytically active hydroxo group of the reduced and oxidized enzyme with nearly the same inhibition constants. Catalysis is not affected by the oxoanions which replace the additional mu-hydroxo ligand in the 558-nm-absorbing Fe(III)-Fe(III) species. In contrast to hemerythrin and ribonucleotide reductase, a binuclear iron center is proposed for the purple acid phosphatase, which is bridged by a carboxylato and two aquo/hydroxo groups, but without a mu-oxo bridge.


Subject(s)
Acid Phosphatase/metabolism , Spleen/enzymology , Animals , Binding Sites , Cattle , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Kinetics , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...