Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (196)2023 06 30.
Article in English | MEDLINE | ID: mdl-37458443

ABSTRACT

Models of the central nervous system (CNS) must recapitulate the complex network of interconnected cells found in vivo. The CNS consists primarily of neurons, astrocytes, oligodendrocytes, and microglia. Due to increasing efforts to replace and reduce animal use, a variety of in vitro cell culture systems have been developed to explore innate cell properties, which allow the development of therapeutics for CNS infections and pathologies. Whilst certain research questions can be addressed by human-based cell culture systems, such as (induced) pluripotent stem cells, working with human cells has its own limitations with regard to availability, costs, and ethics. Here, we describe a unique protocol for isolating and culturing cells from embryonic mouse brains. The resulting mixed neural cell cultures mimic several cell populations and interactions found in the brain in vivo. Compared to current equivalent methods, this protocol more closely mimics the characteristics of the brain and also garners more cells, thus allowing for more experimental conditions to be investigated from one pregnant mouse. Further, the protocol is relatively easy and highly reproducible. These cultures have been optimized for use at various scales, including 96-well based high throughput screens, 24-well microscopy analysis, and 6-well cultures for flow cytometry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. This culture method is a powerful tool to investigate infection and immunity within the context of some of the complexity of the CNS with the convenience of in vitro methods.


Subject(s)
Astrocytes , Neurons , Animals , Mice , Humans , Cells, Cultured , Neurons/pathology , Astrocytes/physiology , Brain , Cell Culture Techniques , Immunity, Innate
2.
Cell Mol Neurobiol ; 42(8): 2655-2671, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34297254

ABSTRACT

Microglial activation is believed to play a role in many psychiatric and neurodegenerative diseases. Based largely on evidence from other cell types, it is widely thought that MAP kinase (ERK, JNK and p38) signalling pathways contribute strongly to microglial activation following immune stimuli acting on toll-like receptor (TLR) 3 or TLR4. We report here that exposure of SimA9 mouse microglial cell line to immune mimetics stimulating TLR4 (lipopolysaccharide-LPS) or TLR7/8 (resiquimod/R848), results in marked MAP kinase activation, followed by induction of nitric oxide synthase, and various cytokines/chemokines. However, in contrast to TLR4 or TLR7/8 stimulation, very few effects of TLR3 stimulation by poly-inosine/cytidine (polyI:C) were detected. Induction of chemokines/cytokines at the mRNA level by LPS and resiquimod were, in general, only marginally affected by MAP kinase inhibition, and expression of TNF, Ccl2 and Ccl5 mRNAs, along with nitrite production, were enhanced by p38 inhibition in a stimulus-specific manner. Selective JNK inhibition enhanced Ccl2 and Ccl5 release. Many distinct responses to stimulation of TLR4 and TLR7 were observed, with JNK mediating TNF protein induction by the latter but not the former, and suppressing Ccl5 release by the former but not the latter. These data reveal complex modulation by MAP kinases of microglial responses to immune challenge, including a dampening of some responses. They demonstrate that abnormal levels of JNK or p38 signalling in microglial cells will perturb their profile of cytokine and chemokine release, potentially contributing to abnormal inflammatory patterns in CNS disease states.


Subject(s)
Microglia , Toll-Like Receptor 3 , Animals , Chemokines/metabolism , Cytidine/metabolism , Cytidine/pharmacology , Cytokines/metabolism , Immunity , Inosine/metabolism , Inosine/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/pharmacology , Mice , Microglia/metabolism , Mitogen-Activated Protein Kinases/metabolism , Nitrites/metabolism , RNA, Messenger/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptors/metabolism
3.
Sci Rep ; 11(1): 23841, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34903784

ABSTRACT

Exposure to infection in utero predisposes towards psychiatric diseases such as autism, depression and schizophrenia in later life. The mechanisms involved are typically studied by administering mimetics of double-stranded (ds) virus or bacterial infection to pregnant rats or mice. The effect of single-stranded (ss) virus mimetics has been largely ignored, despite evidence linking prenatal ss virus exposure with psychiatric disease. Understanding the effects of gestational ss virus exposure has become even more important with recent events. In this study, in pregnant mice, we compare directly the effects, on the maternal blood, placenta and the embryonic brain, of maternal administration of ds-virus mimetic poly I:C (to activate Toll-like receptor 3, TLR3) and ss-virus mimetic resiquimod (to activate TLR7/8). We find that, 4 h after the administration, both poly I:C and resiquimod elevated the levels of IL-6, TNFα, and chemokines including CCL2 and CCL5, in maternal plasma. Both agents also increased placental mRNA levels of IL-6 and IL-10, but only resiquimod increased placental TNFα mRNA. In foetal brain, poly I:C produced no detectable immune-response-related increases, whereas pronounced increases in cytokine (e.g. Il-6, Tnfα) and chemokine (e.g. Ccl2, Ccl5) expression were observed with maternal resiquimod administration. The data show substantial differences between the effect of maternal exposure to a TLR7/8 activator as compared to a TLR3 activator. There are significant implications for future modelling of diseases where maternal ss virus exposure contributes to environmental disease risk in offspring.


Subject(s)
Membrane Glycoproteins/immunology , Placenta/metabolism , Prenatal Exposure Delayed Effects/immunology , Schizophrenia/immunology , Toll-Like Receptor 3/immunology , Toll-Like Receptor 7/immunology , Animals , Chemokines/metabolism , Female , Imidazoles/toxicity , Interleukin-6/metabolism , Male , Membrane Glycoproteins/agonists , Mice , Mice, Inbred C57BL , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Schizophrenia/etiology , Toll-Like Receptor 3/agonists , Toll-Like Receptor 7/agonists , Tumor Necrosis Factor-alpha/metabolism
4.
Front Aging Neurosci ; 11: 351, 2019.
Article in English | MEDLINE | ID: mdl-31920630

ABSTRACT

Microglia and astrocytes can quench metal toxicity to maintain tissue homeostasis, but with age, increasing glial dystrophy alongside metal dyshomeostasis may predispose the aged brain to acquire neurodegenerative diseases. The aim of the present study was to investigate age-related changes in brain metal deposition along with glial distribution in normal C57Bl/6J mice aged 2-, 6-, 19- and 27-months (n = 4/age). Using synchrotron-based X-ray fluorescence elemental mapping, we demonstrated age-related increases in iron, copper, and zinc in the basal ganglia (p < 0.05). Qualitative assessments revealed age-associated increases in iron, particularly in the basal ganglia and zinc in the white matter tracts, while copper showed overt enrichment in the choroid plexus/ventricles. Immunohistochemical staining showed augmented numbers of microglia and astrocytes, as a function of aging, in the basal ganglia (p < 0.05). Moreover, qualitative analysis of the glial immunostaining at the level of the fimbria and ventral commissure, revealed increments in the number of microglia but decrements in astroglia, in older aged mice. Upon morphological evaluation, aged microglia and astroglia displayed enlarged soma and thickened processes, reminiscent of dystrophy. Since glial cells have major roles in metal metabolism, we performed linear regression analysis and found a positive association between iron (R 2 = 0.57, p = 0.0008), copper (R 2 = 0.43, p = 0.0057), and zinc (R 2 = 0.37, p = 0.0132) with microglia in the basal ganglia. Also, higher levels of iron (R 2 = 0.49, p = 0.0025) and zinc (R 2 = 0.27, p = 0.040) were correlated to higher astroglia numbers. Aging was accompanied by a dissociation between metal and glial levels, as we found through the formulation of metal to glia ratios, with regions of basal ganglia being differentially affected. For example, iron to astroglia ratio showed age-related increases in the substantia nigra and globus pallidus, while the ratio was decreased in the striatum. Meanwhile, copper and zinc to astroglia ratios showed a similar regional decline. Our findings suggest that inflammation at the choroid plexus, part of the blood-cerebrospinal-fluid barrier, prompts accumulation of, particularly, copper and iron in the ventricles, implying a compromised barrier system. Moreover, age-related glial dystrophy/senescence appears to disrupt metal homeostasis, likely due to induced oxidative stress, and hence increase the risk of neurodegenerative diseases.

5.
Aging (Albany NY) ; 8(10): 2488-2508, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27743512

ABSTRACT

Despite regulation, brain iron increases with aging and may enhance aging processes including neuroinflammation. Increases in magnetic resonance imaging transverse relaxation rates, R2 and R2*, in the brain have been observed during aging. We show R2 and R2* correlate well with iron content via direct correlation to semi-quantitative synchrotron-based X-ray fluorescence iron mapping, with age-associated R2 and R2* increases reflecting iron accumulation. Iron accumulation was concomitant with increased ferritin immunoreactivity in basal ganglia regions except in the substantia nigra (SN). The unexpected dissociation of iron accumulation from ferritin-upregulation in the SN suggests iron dyshomeostasis in the SN. Occurring alongside microgliosis and astrogliosis, iron dyshomeotasis may contribute to the particular vulnerability of the SN. Dietary restriction (DR) has long been touted to ameliorate brain aging and we show DR attenuated age-related in vivo R2 increases in the SN over ages 7 - 19 months, concomitant with normal iron-induction of ferritin expression and decreased microgliosis. Iron is known to induce microgliosis and conversely, microgliosis can induce iron accumulation, which of these may be the initial pathological aging event warrants further investigation. We suggest iron chelation therapies and anti-inflammatory treatments may be putative 'anti-brain aging' therapies and combining these strategies may be synergistic.


Subject(s)
Aging/metabolism , Ferritins/metabolism , Iron/metabolism , Substantia Nigra/metabolism , Animals , Ferritins/genetics , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Mice , Spectrometry, X-Ray Emission , Substantia Nigra/diagnostic imaging , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...