Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(11): eadk3539, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38478600

ABSTRACT

The field-induced quantum-disordered state of layered honeycomb magnet α-RuCl3 is a prime candidate for Kitaev spin liquids hosting Majorana fermions and non-Abelian anyons. Recent observations of anomalous planar thermal Hall effect demonstrate a topological edge mode, but whether it originates from Majorana fermions or bosonic magnons remains controversial. Here, we distinguish these origins from combined low-temperature measurements of high-resolution specific heat and thermal Hall conductivity with rotating magnetic fields within the honeycomb plane. A distinct closure of the low-energy bulk gap is observed for the fields in the Ru-Ru bond direction, and the gap opens rapidly when the field is tilted. Notably, this change occurs concomitantly with the sign reversal of the Hall effect. General discussions of topological bands show that this is the hallmark of an angle rotation-induced topological transition of fermions, providing conclusive evidence for the Majorana-fermion origin of the thermal Hall effect in α-RuCl3.

2.
Sci Adv ; 10(6): eadk3772, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38324692

ABSTRACT

The recently discovered superconductor UTe2 is a promising candidate for spin-triplet superconductors, but the symmetry of the superconducting order parameter remains highly controversial. Here, we determine the superconducting gap structure by the thermal conductivity of ultraclean UTe2 single crystals. We find that the a-axis thermal conductivity divided by temperature κ/T in zero-temperature limit is vanishingly small for both magnetic field H‖a and H‖c axes up to H/Hc2 ∼ 0.2, demonstrating the absence of nodes around the a axis contrary to the previous belief. The present results, combined with the reduction of nuclear magnetic resonance Knight shift, indicate that the superconducting order parameter belongs to the isotropic Au representation with a fully gapped pairing state, analogous to the B phase of superfluid 3He. These findings reveal that UTe2 is likely to be a long-sought three-dimensional strong topological superconductor, hosting helical Majorana surface states on any crystal plane.

3.
Sci Adv ; 9(18): eabq5561, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37134174

ABSTRACT

Continued advances in quantum technologies rely on producing nanometer-scale wires. Although several state-of-the-art nanolithographic technologies and bottom-up synthesis processes have been used to engineer these wires, critical challenges remain in growing uniform atomic-scale crystalline wires and constructing their network structures. Here, we discover a simple method to fabricate atomic-scale wires with various arrangements, including stripes, X-junctions, Y-junctions, and nanorings. Single-crystalline atomic-scale wires of a Mott insulator, whose bandgap is comparable to those of wide-gap semiconductors, are spontaneously grown on graphite substrates by pulsed-laser deposition. These wires are one unit cell thick and have an exact width of two and four unit cells (1.4 and 2.8 nm) and lengths up to a few micrometers. We show that the nonequilibrium reaction-diffusion processes may play an essential role in atomic pattern formation. Our findings offer a previously unknown perspective on the nonequilibrium self-organization phenomena on an atomic scale, paving a unique way for the quantum architecture of nano-network.

SELECTION OF CITATIONS
SEARCH DETAIL
...