Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 9568, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35688934

ABSTRACT

The streptavidin-biotin system is known to have a very high affinity and specificity and is widely used in biochemical immunoassays and diagnostics. However, this method is affected by endogenous D-biotin in serum sample measurements (biotin interference). While several efforts using alternative high-affinity binding systems (e.g., genetically modified streptavidin and biotin derivatives) have been attempted, these efforts have all led to reduction in affinity. To solve this interference issue, the enantiomer of streptavidin was synthesized, which enabled specific binding to L-biotin. We successfully obtained a functional streptavidin molecule by peptide synthesis using D-amino acids and an in vitro folding technique. Several characterizations, including size exclusion chromatography (SEC), circular dichroism spectra (CD), and heat denaturation experiments collectively confirmed the higher-order enantiomer of natural streptavidin had been formed with comparable stability to the natural protein. L-biotin specific binding of this novel molecule enabled us to avoid biotin interference in affinity measurements using the Biacore system and enzyme-linked immunosorbent assay (ELISA). We propose the enantiomer of streptavidin as a potential candidate to replace the natural streptavidin-biotin system, even for in vivo use.


Subject(s)
Biotin , Biotin/chemistry , Enzyme-Linked Immunosorbent Assay , Immunoassay , Stereoisomerism , Streptavidin/chemistry
2.
J Phys Chem B ; 125(31): 8703-8711, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34328341

ABSTRACT

Single-molecule localization microscopy (SMLM) enables the visualization of biomolecules at unprecedented resolution and requires control of the fluorescent blinking (ON/OFF) states of fluorophores to detect single-molecule fluorescence without overlapping of the signals. Although SMLM probes based on the intramolecular spirocyclization of Si-xanthene fluorophores have been developed, fluorophores with lower ON/OFF ratios are required for SMLM visualization of high-density structures. Here, we describe a silinane structure that lowers the ON/OFF ratio of Si-xanthene fluorophores. On the basis of Mulliken population analysis, we replaced the dimethylsilane moiety in Si-rhodamine with a silinane moiety to increase the partial charge at the 9-position of the carbon atom in the Si-xanthene ring and to promote the ring-closure reaction. Evaluation of fluorescence properties in a solution and in single-molecule imaging indicated that introducing the silinane sufficiently stabilized the nonfluorescent spirocyclic forms, thus decreasing the fluorescence ON/OFF ratio. This novel substitution was applied to Si-rhodamines with various amine structures and to an Si-fluorescein to expand the color palette. We demonstrated SMLM observation of microtubules in fixed HeLa cells using the developed fluorophores in two color channels. The results demonstrated the feasibility of extending the design strategies of SMLM probes based on Si-xanthenes through modification of the substituents on the Si atom.


Subject(s)
Fluorescent Dyes , Microscopy , Fluoresceins , HeLa Cells , Humans , Rhodamines
3.
Sci Rep ; 9(1): 12359, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31451706

ABSTRACT

The Lens culinaris agglutinin (LCA)-reactive fraction of α-fetoprotein (AFP-L3) is a well-known cancer biomarker for hepatocellular carcinoma (HCC) with very high specificity. Because LCA recognizes only bi-antennary N-glycans with a core fucose, some of fucosylated AFP in HCC patients may not be detected. Then glycan antibodies, which recognize both specific glycan and protein, are desired for glycobiology. Here, we successfully established a novel glycan antibody for fucosylated AFP and demonstrated its potential clinical application. After immunization with a fucosylated AFP peptide, positive screening was performed for fucosylated AFP peptides using solid-phase enzyme-linked immunosorbent assay (ELISA). The newly developed antibody was designated: fucosylated AFP-specific mAb (FasMab). Western blot analysis showed that FasMab reacted with AFP produced by HepG2 cells, but not with AFP produced by α-1,6-fucosyltransferase deficient HepG2 cells. The specific binding of FasMab to fucosylated AFP was confirmed with ELISA as well as western blot analysis. A preliminary high sensitivity chemiluminescence enzyme immunoassay kit showed increased levels of fucosylated AFP in the sera of patients with HCC, but not in the sera of normal patients, or patients with chronic liver diseases. Thus, the novel glycan antibody, FasMab, is a promising tool to study fucosylated AFP with clinical and basic research applications.


Subject(s)
Antibodies, Monoclonal/immunology , Biomedical Research , Fucose/metabolism , alpha-Fetoproteins/immunology , Amino Acid Sequence , Animals , Antibody Specificity/immunology , Automation , Cell Line, Tumor , Epitope Mapping , Glycopeptides/chemistry , Glycopeptides/metabolism , Humans , Kinetics , Mice, Inbred BALB C , Polysaccharides/analysis , Rabbits , alpha-Fetoproteins/chemistry
4.
J Biosci Bioeng ; 126(1): 9-14, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29433940

ABSTRACT

A silkworm-baculovirus system is particularly effective for producing recombinant proteins, including glycoproteins. However, N-glycan structures in silkworm differ from those in mammals. Glycoproteins in silkworm are secreted as pauci-mannose type N-glycans without sialic acid or galactose residues. Sialic acid on N-glycans plays important roles in protein functions. Therefore, we developed pathways for galactosylation and sialylation in silkworm. Sialylated N-glycans on proteins were successfully produced in silkworm by co-expressing galactosyltransferase and sialyltransferase and providing an external supply of a sialylation-related substrate. α2,3/α2,6 Sialylation to N-glycans was controlled by changing the type of sialyltransferase expressed in silkworm. Furthermore, the co-expression of N-acetylglucosaminyltransferase II facilitated the formation of additional di-sialylated N-glycan structures. Our results provide new information on the control of N-glycosylation in silkworm.


Subject(s)
Baculoviridae/genetics , Bombyx/genetics , Genetic Vectors , Glycoproteins/biosynthesis , Polysaccharides/metabolism , Protein Engineering/methods , Recombinant Proteins , Animals , Baculoviridae/metabolism , Bombyx/metabolism , Cells, Cultured , Cloning, Molecular , Galactose/metabolism , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Gene Expression , Genetic Vectors/genetics , Genetic Vectors/metabolism , Glycoproteins/isolation & purification , Glycoproteins/metabolism , Glycosylation , Humans , Mannose/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism
5.
J Biosci Bioeng ; 119(2): 131-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25193875

ABSTRACT

The baculovirus-silkworm recombinant protein expression system is an excellent method for achieving high-level expression and post-translational modifications, especially glycosylation. However, the presence of paucimannosidic-type N-glycan in glycoproteins restricts their clinical use. Paucimannosidic-type N-glycan is produced by insect-specific membrane-binding-type ß-N-acetylglucosaminidase (GlcNAcase). In the silkworm, BmGlcNAcase1, BmGlcNAcase2, and BmFDL are membrane-binding-type GlcNAcases. We investigated the localization of these GlcNAcases and found that BmFDL and BmGlcNAcase2 were mainly located in the fat body and hemolymph, respectively. The fat body is the main tissue of recombinant protein expression by baculovirus, and many glycoproteins are secreted into the hemolymph. These results suggest that inhibition of BmFDL and BmGlcNAcase2 could increase GlcNAc-type N-glycan levels. We therefore injected a GlcNAcase inhibitor into silkworms to investigate changes in the N-glycan structure of the glycoprotein expressed by baculovirus; modest levels of GlcNAc-type N-glycan were observed (0.8% of total N-glycan). Next, we generated a transgenic silkworm in which RNA interference (RNAi) reduced the BmFDL transcript level and enzyme activity to 25% and 50%, respectively, of that of the control silkworm. The proportion of GlcNAc-type N-glycan increased to 4.3% in the RNAi-transgenic silkworm. We conclude that the structure of N-glycan can be changed by inhibiting the GlcNAcases in silkworm.


Subject(s)
Acetylglucosaminidase/antagonists & inhibitors , Acetylglucosaminidase/metabolism , Bombyx/enzymology , Glycoproteins/biosynthesis , Glycoproteins/chemistry , Polysaccharides/chemistry , Protein Processing, Post-Translational , Acetylglucosaminidase/isolation & purification , Animals , Animals, Genetically Modified , Baculoviridae/genetics , Bombyx/genetics , Bombyx/metabolism , Fat Body/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosylation , Hemolymph/metabolism , Polysaccharides/metabolism , Protein Transport , RNA Interference , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
6.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 11): 1128-30, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19923733

ABSTRACT

RsbX from Bacillus subtilis is a manganese-dependent PPM phosphatase and negatively regulates the signal transduction of the general stress response by the dephosphorylation of RsbS and RsbR, which are activators of the alternative RNA polymerase sigma factor SigB. In order to elucidate the structural-functional relationship of its Ser/Thr protein-phosphorylation mechanism, an X-ray crystallographic diffraction study of RsbX was performed. Recombinant RsbX was expressed in Escherichia coli, purified and crystallized. Crystals were obtained using the sitting-drop vapour-diffusion method and X-ray diffraction data were collected to 1.06 angstrom resolution with an R(merge) of 8.1%. The crystals belonged to the triclinic space group P1, with unit-cell parameters a = 33.3, b = 41.7, c = 68.6 angstrom , alpha = 98.8, beta = 90.0, gamma = 108.4 degrees.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Phosphoprotein Phosphatases/chemistry , Bacterial Proteins/genetics , Crystallization , Crystallography, X-Ray , Humans , Molecular Sequence Data , Phosphoprotein Phosphatases/genetics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...