Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Front Immunol ; 14: 1166059, 2023.
Article in English | MEDLINE | ID: mdl-38077383

ABSTRACT

The COVID pandemic exposed the critical role T cells play in initial immunity, the establishment and maintenance of long term protection, and of durable responsiveness against novel viral variants. A growing body of evidence indicates that adding measures of cellular immunity will fill an important knowledge gap in vaccine clinical trials, likely leading to improvements in the effectiveness of the next generation vaccines against current and emerging variants. In depth cellular immune monitoring in Phase II trials, particularly for high risk populations such as the elderly or immune compromised, should result in better understanding of the dynamics and requirements for establishing effective long term protection. Such analyses can result in cellular immunity correlates that can then be deployed in Phase III studies using appropriate, scalable technologies. Measures of cellular immunity are less established than antibodies as correlates of clinical immunity, and some misconceptions persist about cellular immune monitoring usefulness, cost, complexity, feasibility, and scalability. We outline the currently available cellular immunity assays, review their readiness for use in clinical trials, their logistical requirements, and the type of information each assay generates. The objective is to provide a reliable source of information that could be leveraged to develop a rational approach for comprehensive immune monitoring during vaccine development.


Subject(s)
Antibodies, Viral , Vaccines , Aged , Humans , Antibodies, Neutralizing , Immunity, Cellular , Vaccine Development
2.
PLoS One ; 18(8): e0290755, 2023.
Article in English | MEDLINE | ID: mdl-37647321

ABSTRACT

Urban coyotes (Canis latrans) in North America increasingly exhibit a high prevalence of Echinococcus multilocularis, a cestode of recent and rising public health concern that uses rodents as intermediate hosts and canids as definitive hosts. However, little is known about the factors that drive the high urban prevalence of this parasite. We hypothesized that the diet of urban coyotes may contribute to their higher E. multilocularis infection prevalence via either (a) greater exposure to the parasite from increased rodent consumption or (b) increased susceptibility to infection due to the negative health effects of consuming anthropogenic food. We tested these hypotheses by comparing the presence and intensity of E. multilocularis infection to physiological data (age, sex, body condition, and spleen mass), short-term diet (stomach contents), and long-term diet (δ13C and δ15N stable isotopes) in 112 coyote carcasses collected for reasons other than this study from Edmonton, Alberta and the surrounding area. Overall, the best predictor of infection status in this population was young age, where the likelihood of infection decreased with age in rural coyotes but not urban ones. Neither short- nor long-term measures of diet could predict infection across our entire sample, but we found support for our initial hypotheses in young, urban coyotes: both rodent and anthropogenic food consumption effectively predicted E. multilocularis infection in this population. The effects of these predictors were more variable in rural coyotes and older coyotes. We suggest that limiting coyote access to areas in which anthropogenic food and rodent habitat overlap (e.g., compost piles or garbage sites) may effectively reduce the risk of infection, deposition, and transmission of this emerging zoonotic parasite in urban areas.


Subject(s)
Coyotes , Echinococcosis , Echinococcus multilocularis , Feeding Behavior , Zoonoses , Animals , Coyotes/parasitology , Echinococcosis/epidemiology , Echinococcosis/transmission , Echinococcosis/veterinary , Age Factors , Cities , Prevalence , Zoonoses/epidemiology , Zoonoses/parasitology , Zoonoses/transmission
3.
Front Immunol ; 13: 923106, 2022.
Article in English | MEDLINE | ID: mdl-36211354

ABSTRACT

First-generation anit-SARS-CoV-2 vaccines were highly successful. They rapidly met an unforeseen emergency need, saved millions of lives, and simultaneously eased the burden on healthcare systems worldwide. The first-generation vaccines, however, focused too narrowly on antibody-based immunity as the sole marker of vaccine trial success, resulting in large knowledge gaps about waning vaccine protection, lack of vaccine robustness to viral mutation, and lack of efficacy in immunocompromised populations. Detailed reviews of first-generation vaccines, including their mode of action and geographical distribution, have been published elsewhere. Second-generation clinical trials must address these gaps by evaluating a broader range of immune markers, including those representing cell-mediated immunity, to ensure the most protective and long-lasting vaccines are brought to market.


Subject(s)
COVID-19 Vaccines , Clinical Trials as Topic , Humans
4.
ISME J ; 16(11): 2503-2512, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35906397

ABSTRACT

Sponges are known for hosting diverse communities of microbial symbionts, but despite persistent interest in the sponge microbiome, most research has targeted marine sponges; freshwater sponges have been the focus of less than a dozen studies. Here, we used 16 S rRNA gene amplicon sequencing and shotgun metagenomics to characterize the microbiome of the freshwater sponge Ephydatia muelleri and identify potential indicators of sponge-microbe mutualism. Using samples collected from the Sooke, Nanaimo, and Cowichan Rivers on Vancouver Island, British Columbia, we show that the E. muelleri microbiome is distinct from the ambient water and adjacent biofilms and is dominated by Sediminibacterium, Comamonas, and unclassified Rhodospirillales. We also observed phylotype-level differences in sponge microbiome taxonomic composition among different rivers. These differences were not reflected in the ambient water, suggesting that other environmental or host-specific factors may drive the observed geographic variation. Shotgun metagenomes and metagenome-assembled genomes further revealed that freshwater sponge-associated bacteria share many genomic similarities with marine sponge microbiota, including an abundance of defense-related proteins (CRISPR, restriction-modification systems, and transposases) and genes for vitamin B12 production. Overall, our results provide foundational information on the composition and function of freshwater sponge-associated microbes, which represent an important yet underappreciated component of the global sponge microbiome.


Subject(s)
Microbiota , Porifera , Animals , DNA Restriction-Modification Enzymes/genetics , Fresh Water , Microbiota/genetics , Phylogeny , Porifera/microbiology , RNA, Ribosomal, 16S/genetics , Transposases/genetics , Vitamin B 12 , Water
5.
Front Immunol ; 13: 880784, 2022.
Article in English | MEDLINE | ID: mdl-35693815

ABSTRACT

COVID-19 vaccine clinical development was conducted with unprecedented speed. Immunity measurements were concentrated on the antibody response which left significant gaps in our understanding how robust and long-lasting immune protection develops. Better understanding the cellular immune response will fill those gaps, especially in the elderly and immunocompromised populations which not only have the highest risk for severe infection, but also frequently have inadequate antibody responses. Although cellular immunity measurements are more logistically complex to conduct for clinical trials compared to antibody measurements, the feasibility and benefit of doing them in clinical trials has been demonstrated and so should be more widely adopted. Adding significant cellular response metrics will provide a deeper understanding of the overall immune response to COVID-19 vaccination, which will significantly inform vaccination strategies for the most vulnerable populations. Better monitoring of overall immunity will also substantially benefit other vaccine development efforts, and indeed any therapies that involve the immune system as part of the therapeutic strategy.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , COVID-19/prevention & control , Humans , Immunity, Cellular , Vaccination , Vaccine Efficacy
6.
mBio ; 12(4): e0192021, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34425695

ABSTRACT

Human immunodeficiency virus (HIV) remodels the cell surface of infected cells to facilitate viral dissemination and promote immune evasion. The membrane-associated viral protein U (Vpu) accessory protein encoded by HIV-1 plays a key role in this process by altering cell surface levels of multiple host proteins. Using an unbiased quantitative plasma membrane profiling approach, we previously identified CD47 as a putative host target downregulated by Vpu. CD47 is a ubiquitously expressed cell surface protein that interacts with the myeloid cell inhibitory receptor signal regulatory protein-alpha (SIRPα) to deliver a "don't-eat-me" signal, thus protecting cells from phagocytosis. In this study, we investigate whether CD47 modulation by HIV-1 Vpu might promote the susceptibility of macrophages to viral infection via phagocytosis of infected CD4+ T cells. Indeed, we find that Vpu downregulates CD47 expression on infected CD4+ T cells, leading to enhanced capture and phagocytosis by macrophages. We further provide evidence that this Vpu-dependent process allows a C-C chemokine receptor type 5 (CCR5)-tropic transmitted/founder (T/F) virus, which otherwise poorly infects macrophages in its cell-free form, to efficiently infect macrophages. Importantly, we show that HIV-1-infected cells expressing a Vpu-resistant CD47 mutant are less prone to infecting macrophages through phagocytosis. Mechanistically, Vpu forms a physical complex with CD47 through its transmembrane domain and targets the latter for lysosomal degradation. These results reveal a novel role of Vpu in modulating macrophage infection, which has important implications for HIV-1 transmission in early stages of infection and the establishment of viral reservoir. IMPORTANCE Macrophages play critical roles in human immunodeficiency virus (HIV) transmission, viral spread early in infection, and as a reservoir of virus. Selective capture and engulfment of HIV-1-infected T cells was shown to drive efficient macrophage infection, suggesting that this mechanism represents an important mode of infection notably for weakly macrophage-tropic T/F viruses. In this study, we provide insight into the signals that regulate this process. We show that the HIV-1 accessory protein viral protein U (Vpu) downregulates cell surface levels of CD47, a host protein that interacts with the inhibitory receptor signal regulatory protein-alpha (SIRPα), to deliver a "don't-eat-me" signal to macrophages. This allows for enhanced capture and phagocytosis of infected T cells by macrophages, ultimately leading to their productive infection even with transmitted/founder (T/F) virus. These findings provide new insights into the mechanisms governing the intercellular transmission of HIV-1 to macrophages with implications for the establishment of the macrophage reservoir and early HIV-1 dissemination in vivo.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD47 Antigen/genetics , Down-Regulation , HIV-1/chemistry , HIV-1/immunology , Human Immunodeficiency Virus Proteins/genetics , Macrophages/virology , Viral Regulatory and Accessory Proteins/genetics , Viroporin Proteins/genetics , CD4-Positive T-Lymphocytes/virology , CD47 Antigen/immunology , HEK293 Cells , Human Immunodeficiency Virus Proteins/metabolism , Humans , Jurkat Cells , Macrophages/immunology , Phagocytosis , Viral Regulatory and Accessory Proteins/metabolism , Viroporin Proteins/metabolism
7.
iScience ; 24(7): 102709, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34296070

ABSTRACT

Studies in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis, have shown potential links between diet components, microbiome composition, and modulation of immune responses. In this review, we reanalyze and discuss findings in an outbred marmoset EAE model in which a yogurt-based dietary supplement decreased disease frequency and severity. We show that although diet has detectable effects on the fecal microbiome, microbiome changes are more strongly associated with the EAE development. Using an ecological framework, we further show that the dominant factors influencing the gut microbiota were marmoset sibling pair and experimental time point. These findings emphasize challenges in assigning cause-and-effect relationships in studies of diet-microbiome-host interactions and differentiating the diet effects from other environmental, stochastic, and host-related factors. We advocate for animal experiments to be designed to allow causal inferences of the microbiota's role in pathology while considering the complex ecological processes that shape microbial communities.

8.
Appl Environ Microbiol ; 87(13): e0038521, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33893121

ABSTRACT

Methanotrophs use methane as their sole carbon and energy source and represent an attractive platform for converting single-carbon feedstocks into value-added compounds. Optimizing these species for biotechnological applications involves choosing an optimal growth substrate based on an understanding of cellular responses to different nutrients. Although many studies of methanotrophs have examined growth rate, yield, and central carbon flux in cultures grown with different carbon and nitrogen sources, few studies have examined more global cellular responses to different media. Here, we evaluated global transcriptomic and metabolomic profiles of Methylomicrobium album BG8 when grown with methane or methanol as the carbon source and nitrate or ammonium as the nitrogen source. We identified five key physiological changes during growth on methanol: M. album BG8 cultures upregulated transcripts for the Entner-Doudoroff and pentose phosphate pathways for sugar catabolism, produced more ribosomes, remodeled the phospholipid membrane, activated various stress response systems, and upregulated glutathione-dependent formaldehyde detoxification. When using ammonium, M. album BG8 upregulated hydroxylamine dehydrogenase (haoAB) and overall central metabolic activity, whereas when using nitrate, cultures upregulated genes for nitrate assimilation and conversion. Overall, we identified several nutrient source-specific responses that could provide a valuable basis for future research on the biotechnological optimization of these species. IMPORTANCE Methanotrophs are gaining increasing interest for their biotechnological potential to convert single-carbon compounds into value-added products such as industrial chemicals, fuels, and bioplastics. Optimizing these species for biotechnological applications requires a detailed understanding of how cellular activity and metabolism vary across different growth substrates. Although each of the two most commonly used carbon sources (methane or methanol) and nitrogen sources (ammonium or nitrate) in methanotroph growth media have well-described advantages and disadvantages in an industrial context, their effects on global cellular activity remain poorly characterized. Here, we comprehensively describe the transcriptomic and metabolomic changes that characterize the growth of an industrially promising methanotroph strain on multiple combinations of carbon and nitrogen sources. Our results represent a more holistic evaluation of cellular activity than previous studies of core metabolic pathways and provide a valuable basis for the future biotechnological optimization of these species.


Subject(s)
Ammonium Compounds/pharmacology , Methane/pharmacology , Methanol/pharmacology , Methylococcaceae/drug effects , Nitrates/pharmacology , Carbohydrate Metabolism/drug effects , Carbon , Formaldehyde/metabolism , Glutathione/metabolism , Metabolome/drug effects , Metabolomics , Methylococcaceae/genetics , Methylococcaceae/growth & development , Methylococcaceae/metabolism , Nitrogen , Oxidoreductases/metabolism , Phospholipids/metabolism , Ribosomes/metabolism , Transcriptome/drug effects
9.
FEMS Microbiol Lett ; 368(2)2021 02 04.
Article in English | MEDLINE | ID: mdl-33378457

ABSTRACT

Methanotrophs use methane as a sole carbon source and thus play a critical role in its global consumption. Intensified interest in methanotrophs for their low-cost production of value-added products and large-scale industrialization has led to investigations of strain-to-strain variation in parameters for growth optimization and metabolic regulation. In this study, Methylocystis sp. Rockwell was grown with methane or methanol as a carbon source and ammonium or nitrate as a nitrogen source. The intracellular metabolomes and production of polyhydroxybutyrate, a bioplastic precursor, were compared among treatments to determine how the different combinations of carbon and nitrogen sources affected metabolite production. The methane-ammonium condition resulted in the highest growth, followed by the methane-nitrate, methanol-nitrate and methanol-ammonium conditions. Overall, the methane-ammonium and methane-nitrate conditions directed metabolism toward energy-conserving pathways, while methanol-ammonium and methanol-nitrate directed the metabolic response toward starvation pathways. Polyhydroxybutyrate was produced at greater abundances in methanol-grown cells, independent of the nitrogen source. Together, the results revealed how Methylocystis sp. Rockwell altered its metabolism with different combinations of carbon and nitrogen source, with implications for production of industrially relevant metabolites.


Subject(s)
Carbon/pharmacology , Industrial Microbiology , Metabolome/drug effects , Methylocystaceae/drug effects , Nitrogen/pharmacology
10.
Microb Ecol ; 81(1): 240-252, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32594248

ABSTRACT

Most knowledge of the vertebrate gut microbiota comes from fecal samples; due to difficulties involved in sample collection, the upper intestinal microbiota is poorly understood in wild animals despite its potential to inform broad interpretations about host-gut microbe relationships under natural conditions. Here, we used 16S rRNA gene sequencing to characterize the microbiota of wild coyotes (Canis latrans) along the gastrointestinal tract, including samples from the duodenum, jejunum, ileum, caecum, ascending and descending colon, and feces. We used this intestinal profile to (1) quantify how intestinal site and individual identity interact to shape the microbiota in an uncontrolled setting, and (2) evaluate whether the fecal microbiota adequately represent other intestinal sites. Microbial communities in the large intestine were distinct from those in the small intestine, with higher diversity and a greater abundance of anaerobic taxa. Within each of the small and large intestine, individual identity explained significantly more among-sample variation than specific intestinal sites, revealing the importance of individual variation in the microbiota of free-living animals. Fecal samples were not an adequate proxy for studying upper intestinal environments, as they contained only half the amplicon sequence variants (ASVs) present in the small intestine at three- to four-fold higher abundances. Our study is a unique biogeographical investigation of the microbiota using free-living mammals rather than livestock or laboratory organisms and provides a foundational understanding of the gastrointestinal microbiota in a wild canid.


Subject(s)
Bacteria/classification , Coyotes/microbiology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics
11.
Sci Rep ; 10(1): 22207, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335116

ABSTRACT

Generalist species able to exploit anthropogenic food sources are becoming increasingly common in urban environments. Coyotes (Canis latrans) are one such urban generalist that now resides in cities across North America, where diseased or unhealthy coyotes are frequently reported in cases of human-wildlife conflict. Coyote health and fitness may be related to habitat use and diet via the gut microbiome, which has far-reaching effects on animal nutrition and physiology. In this study, we used stomach contents, stable isotope analysis, 16S rRNA gene amplicon sequencing, and measures of body condition to identify relationships among habitat use, diet, fecal microbiome composition, and health in urban and rural coyotes. Three distinct relationships emerged: (1) Urban coyotes consumed more anthropogenic food, which was associated with increased microbiome diversity, higher abundances of Streptococcus and Enterococcus, and poorer average body condition. (2) Conversely, rural coyotes harbored microbiomes rich in Fusobacteria, Sutterella, and Anaerobiospirillum, which were associated with protein-rich diets and improved body condition. (3) Diets rich in anthropogenic food were associated with increased abundances of Erysipelotrichiaceae, Lachnospiraceae, and Coriobacteriaceae, which correlated with larger spleens in urban coyotes. Urban coyotes also had an increased prevalence of the zoonotic parasite Echinococcus multilocularis, but there were no detectable connections between parasite infection and microbiome composition. Our results demonstrate how the consumption of carbohydrate-rich anthropogenic food by urban coyotes alters the microbiome to negatively affect body condition, with potential relationships to parasite susceptibility and conflict-prone behavior.


Subject(s)
Animal Feed , Coyotes/microbiology , Health Status , Microbiota , Urban Health , Alberta , Animals , Animals, Wild , Biodiversity , Ecology , Feces/microbiology , North America
12.
J Virol ; 91(8)2017 04 15.
Article in English | MEDLINE | ID: mdl-28148794

ABSTRACT

HIV-1 Vpu is known to alter the expression of numerous cell surface molecules. Given the ever-increasing list of Vpu targets identified to date, we undertook a proteomic screen to discover novel cell membrane proteins modulated by this viral protein. Plasma membrane proteome isolates from Vpu-inducible T cells were subjected to stable isotope labeling of amino acids in cell culture (SILAC)-based mass spectrometry analysis, and putative targets were validated by infection of primary CD4+ T cells. We report here that while intercellular adhesion molecule 1 (ICAM-1) and ICAM-3 are upregulated by HIV-1 infection, expression of Vpu offsets this increase by downregulating these molecules from the cell surface. Specifically, we show that Vpu is sufficient to downregulate and deplete ICAM-1 in a manner requiring the Vpu transmembrane domain and a dual-serine (S52/S56) motif necessary for recruitment of the beta-transducin repeat-containing E3 ubiquitin protein ligase (ß-TrCP) component of the Skp, Cullin, F-box (SCFß-TrCP) E3 ubiquitin ligase. Vpu interacts with ICAM-1 to induce its proteasomal degradation. Interestingly, the E3 ubiquitin ligase component ß-TrCP-1 is dispensable for ICAM-1 surface downregulation yet is necessary for ICAM-1 degradation. Functionally, Vpu-mediated ICAM-1 downregulation lowers packaging of this adhesion molecule into virions, resulting in decreased infectivity. Importantly, while Vpu-mediated downregulation of ICAM-3 has a limited effect on the conjugation of NK cells to HIV-1-infected CD4+ T cells, downregulation of ICAM-1 by Vpu results in a reduced ability of NK cells to bind and kill infected T cells. Vpu-mediated ICAM-1 downregulation may therefore represent an evolutionary compromise in viral fitness by impeding the formation of cell-to-cell contacts between immune cells and infected T cells at the cost of decreased virion infectivity.IMPORTANCE The major barrier to eradicating HIV-1 infection is the establishment of treatment-resistant reservoirs early in infection. Vpu-mediated ICAM-1 downregulation may contribute to the evasion of cell-mediated immunity during acute infection to promote viral dissemination and the development of viral reservoirs. By aiding the immune system to clear infection prior to the development of reservoirs, novel treatments designed to disrupt Vpu-mediated ICAM-1 downregulation may be beneficial during acute infection or as a prophylactic treatment.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Down-Regulation , HIV-1/immunology , Host-Pathogen Interactions , Human Immunodeficiency Virus Proteins/metabolism , Intercellular Adhesion Molecule-1/metabolism , Killer Cells, Natural/immunology , Viral Regulatory and Accessory Proteins/metabolism , Cell Line , Humans , Immune Evasion , Protein Interaction Mapping , Proteolysis
13.
Immunogenetics ; 69(1): 13-27, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27541597

ABSTRACT

Interleukin-7 is essential for the development and maintenance of T cells, and the expression of the IL-7 receptor is tightly regulated at every stage of the T cell's lifespan. In mature CD8 T cells, IL-7 plays important roles in cell survival, peripheral homeostasis, and cytolytic function. The IL-7 receptor alpha-chain (CD127) is expressed at high levels on naïve and memory cells, but it is rapidly downregulated upon IL-7 stimulation. In this study, we illustrate the dynamicity of the CD127 promoter and show that it possesses positive as well as negative regulatory sites involved in upregulating and downregulating CD127 expression, respectively. We cloned the CD127 gene promoter and identified key cis-regulatory elements required for CD127 expression in mature resting primary CD8 T cells. The core promoter necessary for efficient basal transcription is contained within the first 262 bp upstream of the TATA box. Additional positive regulatory elements are located between -1200 and -2406 bp, conferring a further 2- to 4-fold enhancement in gene expression. While transcription of the CD127 gene is increased directly through a glucocorticoid response element located between -2255 and -2269 bp upstream of the TATA box, we identified a suppressive region that lies upstream of 1760 bp from the TATA box, which is likely involved in the IL-7-mediated suppression of CD127 transcription. Finally, we illustrated IL-7 does not bias alternative splicing of CD127 transcripts in primary human CD8 T cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , CD8-Positive T-Lymphocytes/metabolism , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , Interleukin-7/metabolism , Receptors, Interleukin-7/genetics , Blotting, Western , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , Cells, Cultured , Flow Cytometry , Humans , Promoter Regions, Genetic/genetics , Receptors, Interleukin-7/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Signal Transduction/drug effects , Transcription, Genetic
14.
Virology ; 498: 192-200, 2016 11.
Article in English | MEDLINE | ID: mdl-27596538

ABSTRACT

HIV-1 Tat protein down regulates expression of the IL-7 receptor alpha-chain (CD127) from the surface of CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. We have previously shown that soluble Tat protein is taken up by CD8 T cells and interacts with the cytoplasmic tail of CD127 to induce receptor degradation. The N-terminal domain of Tat interacts with CD127 while the basic domain directs CD127 to the proteasome. We have also shown that upon IL-7 binding to its receptor, CD127 is phosphorylated resulting in CIS-mediated proteasomal degradation. Here, we show that Tat mimics this process by recruiting CIS to CD127 in the absence of IL-7 and receptor phosphorylation, leading to CD127 ubiquitination and degradation. Tat therefore acts as an adapter to induce cellular responses under conditions where they may not otherwise occur. Thusly, Tat reduces IL-7 signaling and impairs CD8 T cell survival and function.


Subject(s)
Interleukin-7 Receptor alpha Subunit/metabolism , Proteasome Endopeptidase Complex/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Sequence , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , HIV Infections/immunology , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Humans , Models, Biological , Phosphorylation , Protein Binding , Proteolysis , Ubiquitination , tat Gene Products, Human Immunodeficiency Virus/chemistry
15.
Viruses ; 8(3): 67, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26950141

ABSTRACT

The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV), which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef) and viral protein U (Vpu), which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.


Subject(s)
Cell Membrane/metabolism , HIV-1/physiology , Host-Pathogen Interactions , Human Immunodeficiency Virus Proteins/metabolism , Membrane Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism
16.
Cell Host Microbe ; 18(5): 514-7, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26567503

ABSTRACT

HIV commonly escapes host antiviral immunity by downregulating cell-surface immunoreceptors. In a recent issue of Cell Host & Microbe, Matheson et al. (2015) systematically examined how HIV-1 infection remodels the T cell surface and identified serine carriers SERINC3/5 and alanine transporter SNAT1 as targets of HIV-1 Nef and Vpu, respectively.


Subject(s)
CD4-Positive T-Lymphocytes/chemistry , Cell Membrane/chemistry , HIV-1/physiology , Host-Pathogen Interactions , Human Immunodeficiency Virus Proteins/metabolism , Membrane Proteins/analysis , Viral Regulatory and Accessory Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism
17.
Curr HIV Res ; 13(3): 226-43, 2015.
Article in English | MEDLINE | ID: mdl-25986373

ABSTRACT

We have previously shown that soluble HIV-1 Tat protein down regulates surface expression of the interleukin (IL)-7 receptor alpha-chain (CD127) on human CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. Once taken up by CD8 T cells, Tat translocates to the inner leaflet of the plasma membrane where it interacts with the cytoplasmic tail of CD127 inducing receptor internalization and degradation by the proteasome. Here we characterized the regions of Tat required to interact with CD127 and induce receptor down regulation from the cell surface. To do this, a series of histidine-tagged Tat deletion mutants were generated and expressed as purified soluble protein, or cloned into a DNA expression vector and transfected into primary human CD8 T cells and a CD127 expressing Jurkat cell line. Protein-protein interactions were assessed by co-immunoprecipitation. Substitution of the first 10 Nterminal residues or deletion of residues 17-21 prevented Tat from interacting with and down regulating CD127 from the cell surface. Deletion of the basic region also prevented Tat from down regulating CD127 but did not prevent Tat from binding to the receptor. Notably, an endogenously expressed Tat variant lacking the basic region caused an accumulation of CD127 at the cell surface. We propose a model where Tat interacts with CD127 via its N-terminal region and recruits cellular factors via its basic region to down regulate CD127 from the cell surface.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV-1/physiology , Immune Evasion , Immune Tolerance , Interleukin-7 Receptor alpha Subunit/metabolism , Protein Interaction Mapping , tat Gene Products, Human Immunodeficiency Virus/metabolism , Adult , Cells, Cultured , DNA Mutational Analysis , Gene Expression , HIV-1/immunology , Humans , Immunoprecipitation , Protein Binding , Sequence Deletion , Transfection , tat Gene Products, Human Immunodeficiency Virus/genetics
18.
PLoS One ; 9(10): e111193, 2014.
Article in English | MEDLINE | ID: mdl-25333710

ABSTRACT

HIV infection elicits defects in CD4 T-cell homeostasis in both a quantitative and qualitative manner. Interleukin-7 (IL-7) is essential to T-cell homeostasis and several groups have shown reduced levels of the IL-7 receptor alpha-chain (CD127) on both CD4 and CD8 T-cells in viremic HIV+ patients. We have shown previously that soluble HIV Tat protein specifically down regulates cell surface expression of CD127 on human CD8 T-cells in a paracrine fashion. The effects of Tat on CD127 expression in CD4 T-cells has yet to be described. To explore this effect, CD4 T-cells were isolated from healthy individuals and expression levels of CD127 were examined on cells incubated in media alone or treated with Tat protein. We show here that, similar to CD8 T-cells, the HIV-1 Tat protein specifically down regulates CD127 on primary human CD4 T-cells and directs the receptor to the proteasome for degradation. Down regulation of CD127 in response to Tat was seen on both memory and naive CD4 T-cell subsets and was blocked using either heparin or anti-Tat antibodies. Tat did not induce apoptosis in cultured primary CD4 T-cells over 72 hours as determined by Annexin V and PI staining. Pre-incubation of CD4 T-cells with HIV-1 Tat protein did however reduce the ability of IL-7 to up regulate Bcl-2 expression. Similar to exogenous Tat, endogenously expressed HIV Tat protein also suppressed CD127 expression on primary CD4 T-cells. In view of the important role IL-7 plays in lymphocyte proliferation, homeostasis and survival, down regulation of CD127 by Tat likely plays a central role in immune dysregulation and CD4 T-cell decline. Understanding this effect could lead to new approaches to mitigate the CD4 T-cell loss evident in HIV infection.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , HIV Infections/drug therapy , Interleukin-7/genetics , Receptors, Interleukin-7/biosynthesis , tat Gene Products, Human Immunodeficiency Virus/metabolism , Apoptosis/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation/drug effects , Gene Expression Regulation/drug effects , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/virology , HIV-1/drug effects , Humans , Interleukin-7/metabolism , Receptors, Interleukin-7/genetics , tat Gene Products, Human Immunodeficiency Virus/administration & dosage
19.
Immunol Cell Biol ; 91(2): 149-58, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23207282

ABSTRACT

Interleukin (IL)-7 is an essential nonredundant cytokine, and throughout the lifespan of a T-cell signaling via the IL-7 receptor influences cell survival, proliferation and differentiation. It is therefore no surprise that expression of the IL-7 receptor alpha-chain (CD127) is tightly regulated. We have previously shown that IL-7 downregulates expression of CD127 at the cell surface and now elucidate the kinetics of that suppression and demonstrate that IL-7 downregulates CD127 transcripts and surface protein in primary human CD8 T cells by two separate pathways. We show that IL-7 induces the initial reduction in cell-surface CD127 protein independent of transcriptional suppression, which is delayed by 40-60 min. Although IL-7-mediated downregulation of CD127 transcripts is dependent on Janus kinase (JAK)/STAT5, the early downregulation of surface CD127 protein is independent of JAK activity. The data further illustrate that low levels of IL-7 induce smaller and transient decreases in CD127 transcripts and surface protein, whereas higher concentrations induce more profound and sustained suppression. Such flexibility in receptor expression likely allows for fine-tuned immune responses in human CD8 T cells in different microenvironments and in response to different immunological challenges.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Down-Regulation/drug effects , Interleukin-7/pharmacology , Receptors, Interleukin-7/genetics , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/enzymology , Cell Membrane/drug effects , Cell Membrane/metabolism , Dose-Response Relationship, Immunologic , Humans , Janus Kinases/metabolism , Jurkat Cells , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Interleukin-7/metabolism , STAT3 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Time Factors , Transcription, Genetic/drug effects
20.
J Immunol ; 185(5): 2854-66, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20660706

ABSTRACT

IL-7 signaling is essential to CD8 T cell development, activation, and homeostasis. We have previously shown decreased expression of the IL-7R alpha-chain (CD127) on CD8 T cells in HIV(+) patients and that this downregulation is mediated at least in part by the HIV Tat protein. We show in this study that CD127 has a prolonged t(1/2) in resting CD8 T cells and continuously recycles on and off the cell membrane. We also demonstrate soluble Tat protein significantly decreases the t(1/2) of CD127. Soluble Tat is taken up from the medium and accumulates in CD8 T cells with a peak of 6 h. Once inside the cell, Tat exits the endosomes during their normal acidification and enters the cytosol. Tat then translocates to the inner leaflet of the cell membrane, where it binds directly to the cytoplasmic tail of CD127, inducing receptor aggregation and internalization through a process dependent on microtubules. Tat appears to then target CD127 for degradation via the proteasome. By removing CD127 from the cell surface, the HIV Tat protein is thus able to reduce IL-7 signaling and impair CD8 T cell proliferation and function.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Membrane/immunology , Cell Membrane/metabolism , Protein Subunits/metabolism , Receptors, Interleukin-7/metabolism , Resting Phase, Cell Cycle/immunology , tat Gene Products, Human Immunodeficiency Virus/physiology , CD8-Positive T-Lymphocytes/virology , Cell Membrane/virology , Cells, Cultured , Cycloheximide/pharmacology , Down-Regulation/immunology , Endocytosis , Endosomes/immunology , Endosomes/metabolism , Exocytosis/immunology , Humans , Hydrogen-Ion Concentration , Interleukin-7/antagonists & inhibitors , Interleukin-7/physiology , Protein Subunits/antagonists & inhibitors , Protein Subunits/biosynthesis , Protein Synthesis Inhibitors/pharmacology , Protein Transport/immunology , Receptors, Interleukin-7/antagonists & inhibitors , Receptors, Interleukin-7/biosynthesis , Signal Transduction/immunology , Solubility , tat Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...