Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Neurosci ; : 1-14, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37704369

ABSTRACT

ABSTRACTKetamine, an N-methyl-D-aspartate receptor antagonist, produces rapid antidepressant effects in patients with treatment-resistant depression. However, owing to the undesirable adverse effects of ketamine, there is an urgent need for developing safer and more effective prophylactic and therapeutic interventions for depression. Preclinical studies have demonstrated that activation of the mechanistic target of rapamycin complex 1 (mTORC1) in the medial prefrontal cortex (mPFC) mediates the rapid antidepressant effects of ketamine. The steroidal alkaloid tomatidine and its glycoside α-tomatine (tomatine) can activate mTORC1 signaling in peripheral tissues/cells. We examined whether tomatidine and tomatine exerted prophylactic and therapeutic antidepressant-like actions via mPFC mTORC1 activation using a mouse model of lipopolysaccharide (LPS)-induced depression. Male mice were intraperitoneally (i.p.) administered tomatidine/tomatine before and after the LPS challenge to test their prophylactic and therapeutic effects, respectively. LPS-induced depression-like behaviors in the tail suspension test (TST) and forced swim test (FST) were significantly reversed by prophylactic and therapeutic tomatidine/tomatine administration. LPS-induced anhedonia in the female urine sniffing test was reversed by prophylactic, but not therapeutic, injection of tomatidine, and by prophylactic and therapeutic administration of tomatine. Intra-mPFC infusion of rapamycin, an mTORC1 inhibitor, blocked the prophylactic and therapeutic antidepressant-like effects of tomatidine/tomatine in TST and FST. Moreover, both tomatidine and tomatine produced antidepressant-like effects in ovariectomized female mice, a model of menopause-associated depression. These results indicate that tomatidine and tomatine exert prophylactic and therapeutic antidepressant-like effects via mTORC1 activation in the mPFC and suggest these compounds as promising candidates for novel prophylactic and therapeutic agents for depression.

2.
Neurotherapeutics ; 20(2): 484-501, 2023 03.
Article in English | MEDLINE | ID: mdl-36622634

ABSTRACT

Intracerebroventricular infusion of resolvin E1 (RvE1), a bioactive metabolite derived from eicosapentaenoic acid, exerts antidepressant-like effects in a mouse model of lipopolysaccharide (LPS)-induced depression; these effects are blocked by systemic injection of rapamycin, a mechanistic target of rapamycin complex 1 (mTORC1) inhibitor. Additionally, local infusion of RvE1 into the medial prefrontal cortex (mPFC) or dorsal hippocampal dentate gyrus (DG) produces antidepressant-like effects. To evaluate the potential of RvE1 for clinical use, the present study examined whether treatment with RvE1 via intranasal (i.n.) route, a non-invasive route for effective drug delivery to the brain, produces antidepressant-like effects in LPS-challenged mice using tail suspension and forced swim tests. Intranasal administration of RvE1 significantly attenuated LPS-induced immobility, and these antidepressant-like effects were completely blocked by an AMPA receptor antagonist or L-type voltage-dependent Ca2+ channel blocker. The antidepressant-like effects of both i.n. and intra-mPFC administrations of RvE1 were blocked by intra-mPFC infusion of a neutralizing antibody (nAb) for brain-derived neurotrophic factor (BDNF) or vascular endothelial growth factor (VEGF). Intra-mPFC infusion of rapamycin completely blocked the antidepressant-like effects of both i.n. and intra-mPFC administrations of RvE1 as well as those of intra-mPFC infusion of BDNF and VEGF. Moreover, i.n. RvE1 produced antidepressant-like effects via mTORC1 activation in the mPFC of a mouse model of repeated prednisolone-induced depression. Intra-dorsal DG infusion of BDNF and VEGF nAbs, but not rapamycin, blocked the antidepressant-like effects of i.n. RvE1. These findings suggest that i.n. administration of RvE1 produces antidepressant-like effects through activity-dependent BDNF/VEGF release in the mPFC and dorsal DG, and mTORC1 activation in the mPFC, but not in the dorsal DG. Thus, RvE1 can be a promising candidate for a novel rapid-acting antidepressant.


Subject(s)
Eicosapentaenoic Acid , Vascular Endothelial Growth Factor A , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Administration, Intranasal , Lipopolysaccharides/toxicity , Antidepressive Agents/pharmacology , Antidepressive Agents/metabolism , Prefrontal Cortex/metabolism , Depression/drug therapy
3.
Behav Brain Res ; 418: 113676, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34801580

ABSTRACT

Resolvin E1 (RvE1) is an anti-inflammatory lipid mediator derived from eicosapentaenoic acid. We previously demonstrated that intracerebroventricular (i.c.v.) and intra-medial prefrontal cortex (mPFC) infusions of RvE1 produce antidepressant-like effects in a lipopolysaccharide-induced depression mouse model. To further confirm the antidepressant-like effect of RvE1, the present study examined whether RvE1 ameliorated depression-like behavior induced by repeated injections of prednisolone (PSL), a synthetic glucocorticoid, in male ICR mice. We first ascertained whether repeated subcutaneous treatment with PSL (50 mg/kg, once a day) affected locomotor activity and anxiety-like behavior in the open field test (OFT; after a 5-day PSL treatment) and induced depression-like behavior in the tail suspension test (TST; after a 6-day PSL treatment) and forced swim test (FST; after a 7-day PSL treatment). Repeated PSL injections significantly increased immobility in the FST, which was not ameliorated by acute desipramine treatment (30 mg/kg, i.p.), but not in the TST, without affecting locomotor activity and anxiety-like behavior in the OFT. Subsequently, we investigated the therapeutic effects of i.c.v. (1 ng) and intra-mPFC (50 pg/side) infusions of RvE1 in the repeated PSL-induced depression mouse model using the OFT and FST after 5- and 6-day PSL treatments, respectively. The repeated PSL-induced increase in immobility in the FST was significantly attenuated by both i.c.v. and intra-mPFC infusions of RvE1 without affecting the locomotor activity and anxiety-like behavior. In addition, a single i.c.v. infusion of RvE1 immediately before the first or fourth injection of PSL also attenuated PSL-induced depression-like behavior in the FST, suggesting the preventive effect of RvE1. These results indicate that RvE1 produces antidepressant-like effects in a mouse model of repeated PSL-induced depression.


Subject(s)
Antidepressive Agents/pharmacology , Depression/chemically induced , Dose-Response Relationship, Drug , Eicosapentaenoic Acid/analogs & derivatives , Locomotion/drug effects , Prednisolone/pharmacology , Animals , Disease Models, Animal , Eicosapentaenoic Acid/pharmacology , Hindlimb Suspension , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred ICR , Prefrontal Cortex/drug effects , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...