Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 103(4): 1545-1555, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30607488

ABSTRACT

Sustainable manufacture of dicarboxylic acids (DCAs), which are used as raw materials for multiple commercial products, has been an area of considerable research interest in recent years. Traditional chemical-based manufacture of DCAs suffers from limitations such as harsh operational conditions and generation of hazardous by-products. Microbiological methods involving DCA production depend on the capability of alkane-assimilating microorganisms, particularly α, ω-oxidation, to metabolize alkanes. Alkanes are still used as the most common substrates for this method, but the use of renewable resources, such as vegetable oil-derived fatty acid methyl esters (FAMEs), offers multiple advantages for the sustainable production of DCA. However, DCA production using FAME, unlike that using alkanes, still has low productivity and process stability, and we have attempted to identify several limiting factors that weaken the competitiveness. This review discusses the current status and suggests solutions to various obstacles to improve the biotransformation process of FAMEs.


Subject(s)
Biotechnology/methods , Dicarboxylic Acids/metabolism , Plant Oils/metabolism , Biotechnology/trends , Biotransformation
2.
AMB Express ; 8(1): 75, 2018 May 05.
Article in English | MEDLINE | ID: mdl-29730843

ABSTRACT

Biotransformation of fatty acid methyl esters to dicarboxylic acids has attracted much attention in recent years; however, reports of sebacic acid production using such biotransformation remain few. The toxicity of decanoic acid is the main challenge for this process. Decane induction has been reported to be essential to activate the enzymes involved in the α,ω-oxidation pathway before initiating the biotransformation of methyl decanoate to sebacic acid. However, we observed the accumulation of intermediates (decanoic acid and 10-hydroxydecanoic acid) during the induction period. In this study, we examined the effects of these intermediates on the biotransformation process. The presence of decanoic acid, even at a low concentration (0.2 g/L), inhibited the transformation of 10-hydroxydecanoic acid to sebacic acid. Moreover, about 24-32% reduction in the decanoic acid oxidation was observed in the presence of 0.5-1.5 g/L 10-hydroxydecanoic acid. To eliminate these inhibitory effects, we applied substrate-limiting conditions during the decane induction process, which eliminated the accumulation of decanoic acid. Although the productivity of sebacic acid (34.5 ± 1.10 g/L) was improved, by 28% over that achieved using the previously methods, after 54 h, the accumulation of 10-hydroxydecanoic acid was still detected. The accumulation of 10-hydroxydecanoic acid even under the decane limiting conditions could be an evidence that oxidation of 10-hydroxydecanoic acid could be the rate-limiting step in this process. The improvement of this reaction should be an important objective for further development of the production of sebacic acid using biotransformation.

3.
Appl Microbiol Biotechnol ; 101(16): 6333-6342, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28589225

ABSTRACT

α, ω-Dicarboxylic acids (DCAs) are multipurpose chemicals widely used in polymers, perfumes, plasticizers, lubricants, and adhesives. The biotransformation of DCAs from alkanes and fatty acids by microorganisms has attracted recent interest, since synthesis via chemical oxidation causes problems in terms of the environment and safety. We isolated an ω-oxidizing yeast from a wastewater disposal facility of a petrochemical factory by chemostat enrichment culture. The haploid strain identified as Candida sorbophila DS02 grew on glucose and dodecane, exhibiting greater cell shrinkage on the latter. In flask cultures with mixed alkanes (C10-16) and fatty acid methyl esters (C10-16), DS02 used mixed alkanes simultaneously unlike Candida tropicalis and Yarrowia lipolytica and showed high substrate resistance. In flask cultures with acrylic acid-a known inhibitor of ß-oxidation-DS02 produced 0.28 g/l dodecanedioic acid (DDDA) from dodecane, similar to wild-type C. tropicalis ATCC 20336. In fed-batch fermentation, DS02 produced 9.87 g/l DDDA, which was 5.7-fold higher than wild-type C. tropicalis. These results suggest that C. sorbophila strain DS02 has potential applications for the large-scale production of DCA.


Subject(s)
Candida/metabolism , Dicarboxylic Acids/metabolism , Alkanes/metabolism , Biotransformation , Candida/growth & development , Candida/isolation & purification , Candida tropicalis/metabolism , Dicarboxylic Acids/analysis , Fermentation , Glucose/metabolism , Oxidation-Reduction , Wastewater/microbiology , Yarrowia/metabolism
4.
Bioresour Technol ; 207: 175-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26881335

ABSTRACT

Lignin inhibitory becomes a major obstacle for enzymatic hydrolysis of empty fruit bunch conducted in high solid loading. Since current technology required high enzyme loading, surfactant application could not effectively used since it is only efficient in low enzyme loading. In addition, it will increase final operation cost. Hence, another method namely "proportional enzyme feeding" was investigated in this paper. In this method, enzyme was added to reactor proportionally to substrate addition, different from conventional method ("whole enzyme feeding") where whole enzyme was added prior to hydrolysis process started. Proportional enzyme feeding could increase enzymatic digestibility and glucose concentration up to 26% and 12% respectively, compared to whole enzyme feeding for hydrolysis duration more than 40h. If enzymatic hydrolysis was run less than 40h (25% solid loading), whole enzyme feeding is preferable.


Subject(s)
Arecaceae/metabolism , Batch Cell Culture Techniques/methods , Cellulase/metabolism , Fruit/metabolism , Cellulose/analysis , Hydrolysis , Lignin/analysis , Polysaccharides/analysis , Steam
SELECTION OF CITATIONS
SEARCH DETAIL
...