Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolism ; 57(12): 1753-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19013301

ABSTRACT

We recently reported that the maturation of whisky prolongs the exposure of the body to a given dose of alcohol by reducing the rate of alcohol metabolism and thus lowers the blood acetaldehyde level (Alcohol Clin Exp Res. 2007;31:77s-82s). In this study, administration of the nonvolatile fraction of whisky was found to lower the concentration of acetaldehyde in the blood of mice by depressing alcohol metabolism through the inhibition of liver alcohol dehydrogenase (ADH). Four of the 12 phenolic compounds detected in the nonvolatile fraction (caffeic acid, vanillin, syringaldehyde, ellagic acid), the amounts of which increase during the maturation of whisky, were found to strongly inhibit mouse ADH 1 (class I). Their inhibition constant values for ADH 1 were 0.08, 7.9, 15.6, and 22.0 mumol/L, respectively, whereas that for pyrazole, a well-known ADH inhibitor, was 5.1 mumol/L. The 2 phenolic aldehydes and ellagic acid exhibited a mixed type of inhibition, whereas caffeic acid showed the competitive type. When individually administered to mice together with ethanol, each of these phytophenols depressed the elimination of ethanol, thereby lowering the acetaldehyde concentration of blood. Thus, it was demonstrated that the enhanced inhibition of liver ADH 1 due to the increased amounts of these phytophenols in mature whisky caused the depression of alcohol metabolism and a consequent lowering of blood acetaldehyde level. These substances are commonly found in various food plants and act as antioxidants and/or anticarcinogens. Therefore, the intake of foods rich in them together with alcohol may not only diminish the metabolic toxicity of alcohol by reducing both the blood acetaldehyde level and oxidative stress, but also help limit the amount of alcohol a person drinks by depressing alcohol metabolism.


Subject(s)
Acetaldehyde/blood , Alcohol Dehydrogenase/antagonists & inhibitors , Alcoholic Beverages , Ethanol/pharmacokinetics , Phenols/pharmacology , Acetaldehyde/metabolism , Alcohol Dehydrogenase/metabolism , Animals , Benzaldehydes/pharmacokinetics , Chemical Fractionation , Down-Regulation/drug effects , Ellagic Acid/pharmacokinetics , Liver/drug effects , Liver/enzymology , Liver/metabolism , Male , Mice , Models, Biological , Phenols/metabolism , Volatilization
2.
Alcohol Clin Exp Res ; 31(1 Suppl): S77-82, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17331171

ABSTRACT

BACKGROUND: The maturation of distilled spirits is known to change constituent congeners to improve the qualities of smell and taste. However, it has been largely unknown how maturation modifies the pharmacokinetics or neuropharmacological effects of ethanol. We used single malt whiskies to investigate the effects of spirit maturation on ethanol metabolism and drunkenness. METHODS: Mice were injected with 5-year (5-y) or 20-year (20-y) aged single malt whisky with a concentration of 20% (w/v) ethanol at a dose of 3 g/kg. The concentrations of ethanol and its metabolites in the blood and the duration of loss of righting reflex (LORR) were compared between the 2 whisky groups. In addition, the effects of nonvolatile congeners in whisky on the biomedical reactivities of ethanol were investigated by administering a nonvolatile fraction added to a 20% ethanol solution, whose fraction was prepared by evaporating 16-y whisky. Liver alcohol dehydrogenase (ADH) activity was measured with whisky as the substrate or in the presence of nonvolatile congeners with ethanol as the substrate. RESULTS: The rate of ethanol elimination (mmol/kg/h) was smaller in the 20-y whisky group than in the 5-y group (p<0.01 by Fisher's protected least significant difference), which resulted in lower concentrations of blood acetaldehyde and acetate in the former group than in the latter group (p<0.01 by ANOVA). Nonvolatile congeners added to the ethanol solution also depressed the rate of ethanol elimination in mice. In vitro studies demonstrated that liver ADH activity measured with whisky as the substrate was decreased as a function of the age of the whisky, and that the activity measured with ethanol as the substrate was strongly inhibited by nonvolatile congeners. The duration of LORR was longer in the 20-y group than in the 5-y group (p<0.01). Nonvolatile congeners also prolonged the duration of ethanol-induced LORR, when administered together with ethanol. CONCLUSION: Maturation of whisky delayed ethanol metabolism to lower the level of blood acetaldehyde and acetate with increasing inhibition of liver ADH activity by nonvolatile congeners. It also prolonged drunkenness by enhancing the neurodepressive effects of ethanol, due to increases in the amount of nonvolatile congeners. These biomedical effects of whisky maturation may reduce aversive reactions and cytotoxicity due to acetaldehyde, and may also limit overdrinking with the larger neurodepression.


Subject(s)
Alcoholic Beverages/toxicity , Alcoholic Intoxication/blood , Ethanol/pharmacokinetics , Acetaldehyde/pharmacokinetics , Acetates/pharmacokinetics , Alcohol Dehydrogenase/blood , Animals , Injections, Intraperitoneal , Liver/drug effects , Metabolic Clearance Rate , Mice , Mice, Inbred Strains , Postural Balance/drug effects , Reaction Time/drug effects , Reflex/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...