Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 4025, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34188041

ABSTRACT

The critical dimension of semiconductor devices is approaching the single-nm regime, and a variety of practical devices of this scale are targeted for production. Planar structures of nano-devices are still the center of fabrication techniques, which limit further integration of devices into a chip. Extension into 3D space is a promising strategy for future; however, the surface interaction in 3D nanospace make it hard to integrate nanostructures with ultrahigh aspect ratios. Here we report a unique technique using high-energy charged particles to produce free-standing 1D organic nanostructures with high aspect ratios over 100 and controlled number density. Along the straight trajectory of particles penetrating the films of various sublimable organic molecules, 1D nanowires were formed with approximately 10~15 nm thickness and controlled length. An all-dry process was developed to isolate the nanowires, and planar or coaxial heterojunction structures were built into the nanowires. Electrical and structural functions of the developed standing nanowire arrays were investigated, demonstrating the potential of the present ultrathin organic nanowire systems.

2.
J Phys Chem B ; 122(36): 8614-8623, 2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30134093

ABSTRACT

Nanostructures composed of conjugated polymers or π-conjugated molecules provide sensing platforms with large specific surface areas. One of the feasible approaches to accessing such nanostructured miniaturized sensors with ultrahigh sensitivity is to develop a network of organic nanowires with optical/electronic properties that can measure signals upon interacting with the analytes at their surfaces. In this work, organic nanowires with controlled number density and uniform length were fabricated by one-dimensional solid-state polymerization of 9,9'-spirobi[9 H-fluorene] (SBF) derivatives triggered by high-energy single particles. SBF was chosen as a conjugated molecular motif with the interplay of high density of π-electrons, high solubility, and uniform solid-state structures, allowing us to fabricate sensing platforms via solution processing. The as-deposited energy density in linear polymerization nanospace was theoretically analyzed by a collision model, interpreting nanowire sizes at subnanometer levels. The substitution of bromine atoms was confirmed to be effective not only for the higher collision probability of the incident particles but also for the remarkable increase in radiolytic neutral radical yield via C-Br cleavages or electron-dissociative attachments onto the bromine atoms. The fluorescence spectra of SBF-based nanowires were different from those of SBF derivatives due to extended bond formation as a result of polymerization reactions. Fluorescence was quenched by the addition of nitrobenzene, indicating the potential use of our nanowires for fluorometric sensing applications. Microwave-based conductivity measurements revealed that the SBF-based nanowires exhibited charge carrier transport property upon photoexcitation, and that the conductivity was changed upon treatment with nitrobenzene vapors. The presented strategy of bromination of aromatic rings for efficient fabrication of controlled nanowire networks with favorable fluorescent and charge transport properties of nanowires advances the development of nanostructured sensing systems.

3.
Nanoscale ; 8(32): 14925-31, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27355341

ABSTRACT

Nanowires occupy a prestigious place in nanoelectronics, nanomechanics, and biomimetics. Although there are notable methods to grow nanowires via self-assembly, there is a key drawback in the need to find out the specific conditions appropriate for each system. In this sense, universal techniques to fabricate such nanowires from various organic materials have been sought for the continued progress of the related research field. Here we report one of the promising and facile methodologies to quantitatively produce nanowires with controlled geometrical parameters. In this method, referred to as "Single Particle-Triggered Linear Polymerization (STLiP)", organic thin films on a supporting substrate were irradiated with high-energy charged particles, accelerated by particle accelerators. Each particle penetrates from the top of the films to the substrate while gradually releasing kinetic energy along its trajectory (ion track), generating reactive intermediates such as radical species that eventually induce propagation reactions. The resulting polymerized products were integrated into nanowires with uniform diameter and length that can be isolated via development with appropriate organic solvents. Considering the widely applicable nature of STLiP to organic materials, the present technique opens a new door for access to a number of functional nanowires and their assembly.

4.
Langmuir ; 31(42): 11692-700, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26442713

ABSTRACT

Nanowires that are retractable by external stimulus are the key to fabrication of nanomachines that mimick actinia tentacles in nature. A single particle nanofabrication technique (SPNT) was applied over a large area to the fabrication of retractable nanowires (nanoactinia tentacles) composed of poly(N-isopropylacrylamide) (PNIPAM) and poly(vinylpyrrolidone) (PVP), which are thermoresponsive and hydrophilic polymers. The nanowires were transformed with increasing temperature from rod-like- to globule-forms with gyration radii of ∼1.5 and ∼0.7 µm, respectively. The transformation of the nanowires was reversible and reproducible under repeated cycles of heating and cooling. The reversible transformation was driven by hydration and dehydration of PNIPAM, the thermoresponsive segments, resulting in coil-to-globule transformation of the segments. The nanoactinia tentacle systems trapped the nanoparticles as a model of living cells under thermal stimulation, and the trapping was controlled by temperature. We present herein a unique nanomachine system which can be applicable to nanoparticle filtering/sensing systems and expandable to large-area functionalization and demonstrate polymer-based nanoactuators via scaling of molecular level coil-to-globule transformation into micron-sizes.

5.
Nat Commun ; 5: 3718, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24770668

ABSTRACT

Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules, giving size-controlled protein nanowires with an ultra-high aspect ratio of over 1,000. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin-avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength in phosphate-buffered saline. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin-biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area.


Subject(s)
Nanotechnology/methods , Nanowires/chemistry , Serum Albumin/chemistry , Avidin/metabolism , Biotinylation , Humans , Serum Albumin/metabolism , Trypsin
6.
J Phys Chem B ; 116(42): 12857-63, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23025696

ABSTRACT

High-energy charged particle irradiation of cross-linking polymers gives nanowires formed by cross-linking reactions along the ion track trajectories. Here, the direct formation of nanowires consisting of a conjugated polymer by single-particle nanofabrication technique (SPNT) is investigated. Poly(9,9'-di-n-octylfluorene) (PFO), regioregular poly(3-hexylthiophene) (rrP3HT), and poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) underwent an efficient cross-linking reaction upon irradiation, resulting in the formation of 1-dimensional nanostructures with high and desired aspect ratio reaching up to ∼200. The size of nanowires was perfectly interpreted by well-sophisticated theoretical aspects based on the statistical theory of polymer backbone configurations, suggesting that simple cross-linking reactions of the polymers determine the size and structure of nanowires. PFO based nanostructures exhibited sharp and intense emission with high fluorescence quantum yield indicating the absence of any significant inter/intra polymer chromophore interactions in the nanowires assemblies.


Subject(s)
Cross-Linking Reagents/chemistry , Nanotechnology , Nanowires/chemistry , Polymers/chemistry , Cross-Linking Reagents/chemical synthesis , Fluorescence , Polymers/chemical synthesis , Semiconductors , Ultraviolet Rays
7.
J Nanosci Nanotechnol ; 12(9): 7401-4, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23035483

ABSTRACT

A simple and sensitive sub-micrometer scale method for visualization of the dose distribution of a focused proton beam (FPB) was developed, taking advantage of the formation of a bulky crosslinked structure induced by FPB irradiation of a common polymer and cross-linker, polyacrylic acid-N, N'-methylene bisacrylamide, blend film surface. The irradiated part of the film swelled as a peak, and the height of swelling increased with increasing FPB fluence. The film was used as a proton beam-sensitive polymer film by analysis of the irradiated film surface using atomic force microscopy. The method was successfully applied to confirm the FPB pattern. Typical misaligned spot shape of FPB gave clear 3-dimensional structures, and the half-solenoidal nanostructures are visualized clearly by use of crescent shaped beam.

8.
ACS Appl Mater Interfaces ; 4(10): 5492-7, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-22971000

ABSTRACT

A single particle nanofabrication technique was successfully applied to the fabrication of homogeneous poly(N-isopropylacrylamide) (PNIPAAm) 1D nanogels over a large area, using N,N'-methylene-bis-acrylamide (MBAAm) as a cross-linker. The PNIPAAm 1D nanogels with high aspect ratio over 130 were formed uniformly on the substrate, and the mechanical strength and the length of the 1D nanogels can be easily controlled by adjusting the MBAAm content. The 1D nanogels were transformed from the non-aggregated to aggregated forms over a lower critical solution temperature (LCST) of approximately 32 °C in water. Precise trace of the temperature induced change in the size of the 1D nanogel was well interpreted by the coil-to-globule transition of PNIPAAm, which was clearly visualized in the present study. This is the first report of uniform shape change for a 1D nanogel by external stimulus over a large area.

9.
Sci Rep ; 2: 600, 2012.
Article in English | MEDLINE | ID: mdl-22934128

ABSTRACT

The development of organic semiconducting nanowires that act as charge carrier transport pathways in flexible and lightweight nanoelectronics is a major scientific challenge. We report on the fabrication of fullerene nanowires that is universally applicable to its derivatives (pristine C(60), methanofullerenes of C(61) and C(71), and indene C(60) bis-adduct), realized by the single particle nanofabrication technique (SPNT). Nanowires with radii of 8-11 nm were formed via a chain polymerization reaction induced by a high-energy ion beam. Fabrication of a poly(3-hexylthiophene) (P3HT): [6,6]-phenyl C(61) butyric acid methyl ester (PC(61)BM) bulk heterojunction organic photovoltaic cell including PC(61)BM nanowires with precisely-controlled length and density demonstrates how application of this methodology can improve the power conversion efficiency of these inverted cells. The proposed technique provides a versatile platform for the fabrication of continuous and uniform n-type fullerene nanowires towards a wide range of organic electronics applications.

10.
J Phys Chem B ; 110(39): 19319-22, 2006 Oct 05.
Article in English | MEDLINE | ID: mdl-17004787

ABSTRACT

The direct formation of multisegment nanowires consisting of polymer domains by ion beam irradiation is investigated. Cross-linking reactions in the ion tracks result in localized gelation, giving isolated nanowires on substrates. It is demonstrated that the morphology of the final nanostructure is customized by appropriate selection of the ion fluence, combination of polymers, and the solvent employed for development. Octopus-like nanostructures consisting of a tangled hydrophilic polymer core and splayed hydrophobic polymer segments are successfully produced as an example of the process. The present technique provides universal feasibility for the formation of nanostructures based on "any" polymer materials in which radiation induces cross-linking reactions.

11.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 58(7): 948-56, 2002 Jul.
Article in Japanese | MEDLINE | ID: mdl-12515963

ABSTRACT

In this work, we considered the effect of electromagnetic compatibility (EMC) on electronic instruments used in medical facilities. We simulated and measured the intensity distribution of the electromagnetic field around portable phones and examined the influence of electromagnetic field on telemeter-type electrocardiograms (ECG) and computer display cathode ray tubes (CRT) when portable phones were brought close to them. Results showed that the waves observed on ECG are affected up to a distance of 55cm (3.55E+03V/m) from the portable phone, and the grid of the computer display is affected up to a distance of 9cm (7.16E+04V/m) in the front and 14cm (2.97E+04V/m) in the back. Therefore, to reduce electromagnetic intensity (EMI) maintaining a distance far enough from the source is effective.


Subject(s)
Electronics, Medical , Radiation , Cell Phone , Computer Terminals , Data Display , Electrocardiography/instrumentation , Health Facilities
SELECTION OF CITATIONS
SEARCH DETAIL
...