Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 22(12): 5412-8, 2006 Jun 06.
Article in English | MEDLINE | ID: mdl-16732671

ABSTRACT

A unique method is described for directly observing the lateral organization of a membrane protein (bacterial light-harvesting complex LH2) in a supported lipid bilayer using total internal reflection fluorescence (TIRF) microscopy. The supported lipid bilayer consisted of anionic 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1'-glycerol)] (DOPG) and 1,2-distearoly-sn-3-[phospho-rac-(1'-glycerol)] (DSPG) and was formed through the rupture of a giant vesicle on a positively charged coverslip. TIRF microscopy revealed that the bilayer was composed of phase-separated domains. When a suspension of cationic phospholipid (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine: EDOPC) vesicles (approximately 400 nm in diameter), containing LH2 complexes (EDOPC/LH2 = 1000/1), was put into contact with the supported lipid bilayer, the cationic vesicles immediately began to fuse and did so specifically with the fluid phase (DOPG-rich domain) of the supported bilayer. Fluorescence from the incorporated LH2 complexes gradually (over approximately 20 min) spread from the domain boundary into the gel domain (DSPG-rich domain). Similar diffusion into the domain-structured supported lipid membrane was observed when the fluorescent lipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lissamine-rhodamine B sulfonyl: N-Rh-DOPE) was incorporated into the vesicles instead of LH2. These results indicate that vesicles containing LH2 and lipids preferentially fuse with the fluid domain, after which they laterally diffuse into the gel domain. This report describes for first time the lateral organization of a membrane protein, LH2, via vesicle fusion and subsequent lateral diffusion of the LH2 from the fluid to the gel domains in the supported lipid bilayer. The biological implications and applications of the present study are briefly discussed.


Subject(s)
Bacterial Proteins , Light-Harvesting Protein Complexes , Lipid Bilayers , Rhodopseudomonas/enzymology , Microscopy, Fluorescence , Rhodopseudomonas/cytology
2.
Biochemistry ; 44(13): 5129-39, 2005 Apr 05.
Article in English | MEDLINE | ID: mdl-15794650

ABSTRACT

A series of cysteine-bearing hydrophobic polypeptides analogous to a light-harvesting one betapolypeptide (LH1beta) from the LH1 complex from the purple photosynthetic bacterium, Rhodobacter sphaeroides, was synthesized using an Escherichia coli expression system. The cysteine was placed in the C- or N-terminal regions of the polypeptide to investigate the influence of steric confinement and orientation of the polypeptides via disulfide linkages as they were self-assembled with zinc-substituted bacteriochlorophyll a ([Zn]-BChl a). The polypeptides were expressed as water-soluble fusion proteins with maltose-binding protein (MBP). The fusion proteins formed a subunit-type complex with the [Zn]-BChl a in an n-octyl-beta-d-glucopyranoside (OG) micellar solution regardless of the cross-links or the cleavage of the cysteines, judging from absorption, CD, and fluorescence spectra. Following treatment with trypsin, the polypeptides were detached from the MBP portion. Such trypsin-digested polypeptides formed a subunit-type LH complex at 25 degrees C, which also showed that the disulfide linkage was not crucial for the subunit formation. When a polypeptide having cysteine on the C-terminus was assembled at 4 degrees C, the Qy absorption band was remarkably red-shifted to approximately 836 nm, suggesting that the cleavage of the large MBP portion liberates the polypeptides to form the progressive type of complex similar to LH1-type complex. The trypsin-treated polypeptides bearing cysteines in both terminal regions, which are randomly cross-linked, did not form the LH1-type complex under oxidative conditions but did form the complex under reductive conditions. This observation suggests that the polypeptide orientation strongly influences the LH1-type complex formation. The progressive assembly from the subunit to the holo-LH1-type complex following cleavage of MBP portion in a lipid bilayer is also briefly discussed.


Subject(s)
Bacteriochlorophyll A/chemistry , Light-Harvesting Protein Complexes/chemistry , Amino Acid Sequence , Bacteriochlorophyll A/biosynthesis , Base Sequence , Cysteine/chemistry , DNA, Bacterial/genetics , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Light-Harvesting Protein Complexes/biosynthesis , Light-Harvesting Protein Complexes/genetics , Macromolecular Substances , Models, Molecular , Molecular Mimicry , Molecular Sequence Data , Peptides/chemistry , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/metabolism , Sequence Homology, Amino Acid , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...