Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Robot AI ; 10: 1282299, 2023.
Article in English | MEDLINE | ID: mdl-38099007

ABSTRACT

Identifying an accurate dynamics model remains challenging for humanoid robots. The difficulty is mainly due to the following two points. First, a good initial model is required to evaluate the feasibility of motions for data acquisition. Second, a highly nonlinear optimization problem needs to be solved to design movements to acquire the identification data. To cope with the first point, in this paper, we propose a curriculum of identification to gradually learn an accurate dynamics model from an unreliable initial model. For the second point, we propose using a large-scale human motion database to efficiently design the humanoid movements for the parameter identification. The contribution of our study is developing a humanoid identification method that does not require the good initial model and does not need to solve the highly nonlinear optimization problem. We showed that our curriculum-based approach was able to more efficiently identify humanoid model parameters than a method that just randomly picked reference motions for identification. We evaluated our proposed method in a simulation experiment and demonstrated that our curriculum was led to obtain a wide variety of motion data for efficient parameter estimation. Consequently, our approach successfully identified an accurate model of an 18-DoF, simulated upper-body humanoid robot.

2.
Front Syst Neurosci ; 8: 138, 2014.
Article in English | MEDLINE | ID: mdl-25140134

ABSTRACT

We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task.

3.
Neural Netw ; 29-30: 8-19, 2012 May.
Article in English | MEDLINE | ID: mdl-22366503

ABSTRACT

In this study, we propose an extension of the MOSAIC architecture to control real humanoid robots. MOSAIC was originally proposed by neuroscientists to understand the human ability of adaptive control. The modular architecture of the MOSAIC model can be useful for solving nonlinear and non-stationary control problems. Both humans and humanoid robots have nonlinear body dynamics and many degrees of freedom. Since they can interact with environments (e.g., carrying objects), control strategies need to deal with non-stationary dynamics. Therefore, MOSAIC has strong potential as a human motor-control model and a control framework for humanoid robots. Yet application of the MOSAIC model has been limited to simple simulated dynamics since it is susceptive to observation noise and also cannot be applied to partially observable systems. Our approach introduces state estimators into MOSAIC architecture to cope with real environments. By using an extended MOSAIC model, we are able to successfully generate squatting and object-carrying behaviors on a real humanoid robot.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Psychomotor Performance , Robotics/methods , Humans , Robotics/instrumentation , Robotics/trends
4.
Neural Comput ; 24(3): 577-606, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22168558

ABSTRACT

Reinforcement learning (RL) can provide a basic framework for autonomous robots to learn to control and maximize future cumulative rewards in complex environments. To achieve high performance, RL controllers must consider the complex external dynamics for movements and task (reward function) and optimize control commands. For example, a robot playing tennis and squash needs to cope with the different dynamics of a tennis or squash racket and such dynamic environmental factors as the wind. In addition, this robot has to tailor its tactics simultaneously under the rules of either game. This double complexity of the external dynamics and reward function sometimes becomes more complex when both the multiple dynamics and multiple reward functions switch implicitly, as in the situation of a real (multi-agent) game of tennis where one player cannot observe the intention of her opponents or her partner. The robot must consider its opponent's and its partner's unobservable behavioral goals (reward function). In this article, we address how an RL agent should be designed to handle such double complexity of dynamics and reward. We have previously proposed modular selection and identification for control (MOSAIC) to cope with nonstationary dynamics where appropriate controllers are selected and learned among many candidates based on the error of its paired dynamics predictor: the forward model. Here we extend this framework for RL and propose MOSAIC-MR architecture. It resembles MOSAIC in spirit and selects and learns an appropriate RL controller based on the RL controller's TD error using the errors of the dynamics (the forward model) and the reward predictors. Furthermore, unlike other MOSAIC variants for RL, RL controllers are not a priori paired with the fixed predictors of dynamics and rewards. The simulation results demonstrate that MOSAIC-MR outperforms other counterparts because of this flexible association ability among RL controllers, forward models, and reward predictors.


Subject(s)
Algorithms , Artificial Intelligence , Reward , Robotics/methods , Learning , Reinforcement, Psychology
5.
Exp Brain Res ; 181(3): 395-408, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17437093

ABSTRACT

Many evidences suggest that the central nervous system (CNS) acquires and switches internal models for adaptive control in various environments. However, little is known about the neural mechanisms responsible for the switching. A recent computational model for simultaneous learning and switching of internal models proposes two separate switching mechanisms: a predictive mechanism purely based on contextual information and a postdictive mechanism based on the difference between actual and predicted sensorimotor feedbacks. This model can switch internal models solely based on contextual information in a predictive fashion immediately after alteration of the environment. Here we show that when subjects simultaneously adapted to alternating blocks of opposing visuomotor rotations, explicit contextual information about the rotations improved the initial performance at block alternations and asymptotic levels of performance within each block but not readaptation speeds. Our simulations using separate switching mechanisms duplicated these effects of contextual information on subject performance and suggest that improvement of initial performance was caused by improved accuracy of the predictive switch while adaptation speed corresponds to a switch dependent on sensorimotor feedback. Simulations also suggested that a slow change in output signals from the switching mechanisms causes contamination of motor commands from an internal model used in the previous context (anterograde interference) and partial destruction of internal models (retrograde interference). Explicit contextual information prevents destruction and assists memory retention by improving the changes in output signals. Thus, the asymptotic levels of performance improved.


Subject(s)
Adaptation, Physiological/physiology , Computer Simulation , Learning/physiology , Memory/physiology , Psychomotor Performance/physiology , Adult , Arm/innervation , Arm/physiology , Artificial Intelligence , Brain/physiology , Cues , Feedback/physiology , Humans , Illusions/physiology , Kinesthesis/physiology , Male , Models, Neurological , Motor Skills/physiology , Neural Networks, Computer , Neuropsychological Tests , Orientation/physiology , Photic Stimulation , Reaction Time/physiology , Rotation , Space Perception/physiology , Task Performance and Analysis , Transfer, Psychology , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL