Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 903539, 2022.
Article in English | MEDLINE | ID: mdl-35860530

ABSTRACT

Plants have evolved diverse strategies for foraging, e.g., mycorrhizae, modification of root system architecture, and secretion of phosphatase. Despite extensive molecular/physiological studies on individual strategies under laboratory/greenhouse conditions, there is little information about how plants orchestrate these strategies in the field. We hypothesized that individual strategies are independently driven by corresponding genetic modules in response to deficiency/unbalance in nutrients. Roots colonized by mycorrhizal fungi, leaves, and root-zone soils were collected from 251 maize plants grown across the United States Corn Belt and Japan, which provided a large gradient of soil characteristics/agricultural practice and thus gene expression for foraging. RNA was extracted from the roots, sequenced, and subjected to gene coexpression network analysis. Nineteen genetic modules were defined and functionally characterized, from which three genetic modules, mycorrhiza formation, phosphate starvation response (PSR), and root development, were selected as those directly involved in foraging. The mycorrhizal module consists of genes responsible for mycorrhiza formation and was upregulated by both phosphorus and nitrogen deficiencies. The PSR module that consists of genes encoding phosphate transporter, secreted acid phosphatase, and enzymes involved in internal-phosphate recycling was regulated independent of the mycorrhizal module and strongly upregulated by phosphorus deficiency relative to nitrogen. The root development module that consists of regulatory genes for root development and cellulose biogenesis was upregulated by phosphorus and nitrogen enrichment. The expression of this module was negatively correlated with that of the mycorrhizal module, suggesting that root development is intrinsically an opposite strategy of mycorrhizae. Our approach provides new insights into understanding plant foraging strategies in complex environments at the molecular level.

2.
Plant Cell Physiol ; 59(3): 544-553, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29325120

ABSTRACT

Arbuscular mycorrhiza (AM) is a mutualistic association between most plant species and the ancient fungal phylum Glomeromycota in roots, and it plays a key role in a plant's nutrient uptake from the soil. Roots synthesize strigolactones (SLs), derivatives of carotenoids, and exude them to induce energy metabolism and hyphal branching of AM fungi. Despite the well-documented roles of SLs in the pre-symbiotic phase, little is known about the role of SLs in the process of root colonization. Here we show that the expansion of root colonization is suppressed in the mutants of rice (Oryza sativa) SL biosynthesis genes, carotenoid cleavage dioxygenase D10 and more severely in D17. Interestingly, most of the colonization process is normal, i.e. AM fungal hyphae approach the roots and cling around them, and epidermal penetration, arbuscule size, arbuscule number per hyphopodium and metabolic activity of the intraradical mycelium are not affected in d10 and d17 mutants. In contrast, hyphopodium formation is severely attenuated. Our observations establish the requirement for SL biosynthesis genes for efficient hyphopodium formation, suggesting that SLs are required in this process. Efficient hyphopodium formation is required for the punctual internalization of hyphae into roots and maintaining the expansion of colonization.


Subject(s)
Biosynthetic Pathways/genetics , Genes, Plant , Lactones/metabolism , Mycorrhizae/metabolism , Oryza/genetics , Oryza/microbiology , Plant Roots/genetics , Plant Roots/microbiology , Gene Expression Regulation, Plant , Hyphae/physiology , Models, Biological , Mutation/genetics , Up-Regulation/genetics
3.
Mycorrhiza ; 27(2): 139-146, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27766430

ABSTRACT

The development of arbuscular mycorrhiza (AM) is strongly suppressed under high-phosphate (Pi) conditions. To investigate AM fungal responses during the suppression of AM by high Pi, we performed an RNA-seq analysis of Rhizophagus irregularis colonizing Lotus japonicus roots at different levels of Pi (20, 100, 300, and 500 µM). AM fungal colonization decreased markedly under high-Pi conditions. In total, 163 fungal genes were differentially expressed among the four Pi treatments. Among these genes, a cell cycle-regulatory gene, cyclin-dependent kinase CDK1, and several DNA replication- and mitosis-related genes were repressed under high-Pi conditions. More than 20 genes encoding secreted proteins were also downregulated by high-Pi conditions, including the strigolactone-induced putative secreted protein 1 gene that enhances AM fungal colonization. In contrast, the expression of genes related to aerobic respiration and transport in R. irregularis were largely unaffected. Our data suggest that high Pi suppresses the expression of genes associated with fungal cell cycle progression or that encode secreted proteins that may be required for intercellular hyphal growth and arbuscule formation. However, high Pi has little effect on the transcriptional regulation of the primary metabolism or transport in preformed fungal structures.


Subject(s)
Cell Cycle/drug effects , Gene Expression Regulation, Fungal/drug effects , Glomeromycota/drug effects , Mycorrhizae/physiology , Phosphates/pharmacology , Transcriptome/drug effects , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glomeromycota/metabolism , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...