Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychopharmacol Rep ; 39(4): 279-288, 2019 12.
Article in English | MEDLINE | ID: mdl-31487433

ABSTRACT

BACKGROUND: Long-term antipsychotic treatment in patients with schizophrenia can induce supersensitivity psychosis and tardive dyskinesia which is thought to be caused by dopamine D2 receptor sensitization. We evaluated the effects of brexpiprazole on D2 receptor sensitivity after subchronic treatment in rats. We also evaluated whether brexpiprazole could suppress enhanced response to D2 receptors in rats subchronically dosed with another atypical antipsychotic. METHODS: The maximum D2 receptor density (Bmax ) and apomorphine (a D2 receptor agonist)-induced stereotypy were measured in rats orally dosed with vehicle, haloperidol (1 mg/kg), or brexpiprazole (4 or 30 mg/kg for Bmax , 6 or 30 mg/kg for stereotypy) for 21 days. Then, effects of oral administrations of brexpiprazole (3 mg/kg), aripiprazole (10 mg/kg), and olanzapine (3 mg/kg) against increases in apomorphine-induced hyperlocomotion and (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI: a 5-HT2A receptor agonist)-induced head twitches were evaluated in rats subcutaneously treated with risperidone (1.5 mg/kg/d) via minipumps for 21 days. RESULTS: Haloperidol and brexpiprazole (30 mg/kg: approximately tenfold ED50 of anti-apomorphine-induced stereotypy) but not brexpiprazole (4 or 6 mg/kg) significantly increased the Bmax and apomorphine-induced stereotypy. Brexpiprazole (3 mg/kg) and olanzapine (3 mg/kg) significantly suppressed both increases in apomorphine-induced hyperlocomotion and also DOI-induced head twitches in rats subchronically treated with risperidone, but aripiprazole (10 mg/kg) significantly suppressed only apomorphine-induced hyperlocomotion. CONCLUSION: Brexpiprazole has a low risk of D2 receptor sensitization after a repeated administration and suppresses the rebound phenomena related to D2 and 5-HT2A receptors after a repeated administration of risperidone.


Subject(s)
Antipsychotic Agents/pharmacology , Dyskinesia, Drug-Induced/metabolism , Quinolones/pharmacology , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Dopamine D2/metabolism , Stereotyped Behavior/drug effects , Thiophenes/pharmacology , Animals , Antipsychotic Agents/adverse effects , Apomorphine/pharmacology , Dopamine Agonists/pharmacology , Haloperidol/pharmacology , Rats
2.
Clin Ther ; 37(8): 1632-42, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26243073

ABSTRACT

PURPOSE: Alzheimer disease (AD) is a growing global health and economic issue as elderly populations increase dramatically across the world. Despite the many clinical trials conducted, currently no approved disease-modifying treatment exists. In this commentary, the present status of AD drug development and the grounds for collaborations between government, academia, and industry to accelerate the development of disease-modifying AD therapies are discussed. METHODS: Official government documents, literature, and news releases were surveyed by MEDLINE and website research. FINDINGS: Currently approved anti-AD drugs provide only short-lived symptomatic improvements, which have no effect on the underlying pathogenic mechanisms or progression of the disease. The failure to approve a disease-modifying drug for AD may be because the progression of AD in the patient populations enrolled in clinical studies was too advanced for drugs to demonstrate cognitive and functional improvements. The US Food and Drug Administration and the European Medicines Agency recently published draft guidance for industry which discusses approaches for conducting clinical studies with patients in early AD stages. For successful clinical trials in early-stage AD, however, it will be necessary to identify biomarkers highly correlated with the clinical onset and the longitudinal progress of AD. In addition, because of the high cost and length of clinical AD studies, support in the form of global initiatives and collaborations between government, industry, and academia is needed. IMPLICATIONS: In response to this situation, national guidance and international collaborations have been established. Global initiatives are focusing on 2025 as a goal to provide new treatment options, and early signs of success in biomarker and drug development are already emerging.


Subject(s)
Alzheimer Disease/drug therapy , Clinical Trials as Topic , Drug Approval , Alzheimer Disease/blood , Alzheimer Disease/prevention & control , Biomarkers/blood , Global Health , Humans , Neuroprotective Agents/therapeutic use , Nootropic Agents/therapeutic use , Research Design
3.
J Pharmacol Exp Ther ; 350(3): 605-14, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24947464

ABSTRACT

Brexpiprazole (OPC-34712, 7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one) is a novel serotonin-dopamine activity modulator with partial agonist activity at serotonin 1A (5-HT1A) and D2/3 receptors, combined with potent antagonist effects on 5-HT2A, α1B-, and α2C-adrenergic receptors. Brexpiprazole inhibited conditioned avoidance response (ED50 = 6.0 mg/kg), apomorphine- or d-amphetamine-induced hyperactivity (ED50 = 2.3 and 0.90, respectively), and apomorphine-induced stereotypy (ED50 = 2.9) in rats at clinically relevant D2 receptor occupancies. Brexpiprazole also potently inhibited apomorphine-induced eye blinking in monkeys. The results suggest that brexpiprazole has antipsychotic potential. Brexpiprazole induced catalepsy (ED50 = 20) well above clinically relevant D2 receptor occupancies, suggesting a low risk for extrapyramidal side effects. Subchronic treatment with phencyclidine (PCP) induced cognitive impairment in both novel object recognition (NOR) and attentional set-shifting (ID-ED) tests in rats. Brexpiprazole reversed the PCP-induced cognitive impairment in the NOR test at 1.0 and 3.0 mg/kg, and in the ID-ED test at 1.0 mg/kg. However, aripiprazole (10 mg/kg) was ineffective in both tests, despite achieving relevant D2 occupancies. In the NOR test, the 5-HT1A agonist buspirone and the 5-HT2A antagonist M100907 [(R)-(2,3-dimethoxyphenyl)[1-(4-fluorophenethyl)piperidin-4-yl]methanol] partially but significantly reversed PCP-induced impairment. Furthermore, the effect of brexpiprazole was reversed by cotreatment with the 5-HT1A antagonist WAY100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate). The results indicate that brexpiprazole has antipsychotic-like activity and robust efficacy in relevant models of cognitive impairment associated with schizophrenia. The effects of brexpiprazole in the cognitive tests are superior to those of aripiprazole. We propose that the pharmacologic profile of brexpiprazole be based on its balanced effects on 5-HT1A, D2, and 5-HT2A receptors, with possible modulating activity through additional monoamine receptors.


Subject(s)
Antipsychotic Agents/pharmacology , Avoidance Learning/drug effects , Cognition/drug effects , Dopamine/physiology , Serotonin/physiology , Animals , Avoidance Learning/physiology , Cognition/physiology , Dose-Response Relationship, Drug , Macaca fascicularis , Male , Motor Activity/drug effects , Motor Activity/physiology , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1A/physiology , Receptor, Serotonin, 5-HT2A/physiology , Receptors, Dopamine D2/physiology , Treatment Outcome
4.
J Pharmacol Exp Ther ; 350(3): 589-604, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24947465

ABSTRACT

Brexpiprazole (OPC-34712, 7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one) is a novel drug candidate in clinical development for psychiatric disorders with high affinity for serotonin, dopamine, and noradrenaline receptors. In particular, it bound with high affinity (Ki < 1 nM) to human serotonin 1A (h5-HT1A)-, h5-HT2A-, long form of human D2 (hD2L)-, hα1B-, and hα2C-adrenergic receptors. It displayed partial agonism at h5-HT1A and hD2 receptors in cloned receptor systems and potent antagonism of h5-HT2A receptors and hα1B/2C-adrenoceptors. Brexpiprazole also had affinity (Ki < 5 nM) for hD3-, h5-HT2B-, h5-HT7-, hα1A-, and hα1D-adrenergic receptors, moderate affinity for hH1 (Ki = 19 nM), and low affinity for hM1 receptors (Ki > 1000 nM). Brexpiprazole potently bound to rat 5-HT2A and D2 receptors in vivo, and ex vivo binding studies further confirmed high 5-HT1A receptor binding potency. Brexpiprazole inhibited DOI (2,5-dimethoxy-4-iodoamphetamine)-induced head twitches in rats, suggestive of 5-HT2A antagonism. Furthermore, in vivo D2 partial agonist activity of brexpiprazole was confirmed by its inhibitory effect on reserpine-induced DOPA accumulation in rats. In rat microdialysis studies, brexpiprazole slightly reduced extracellular dopamine in nucleus accumbens but not in prefrontal cortex, whereas moderate increases of the dopamine metabolites, homovanillic acid and DOPAC (3,4-dihydroxy-phenyl-acetic acid), in these areas also suggested in vivo D2 partial agonist activity. In particular, based on a lower intrinsic activity at D2 receptors and higher binding affinities for 5-HT1A/2A receptors than aripiprazole, brexpiprazole would have a favorable antipsychotic potential without D2 receptor agonist- and antagonist-related adverse effects. In conclusion, brexpiprazole is a serotonin-dopamine activity modulator with a unique pharmacology, which may offer novel treatment options across a broad spectrum of central nervous system disorders.


Subject(s)
Dopamine Agents/chemistry , Dopamine Agents/metabolism , Dopamine/metabolism , Quinolones/chemistry , Quinolones/metabolism , Serotonin Agents/chemistry , Serotonin Agents/metabolism , Serotonin/metabolism , Thiophenes/chemistry , Thiophenes/metabolism , Animals , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , Dopamine D2 Receptor Antagonists , Dose-Response Relationship, Drug , Humans , Male , Protein Binding/physiology , Quinolones/pharmacology , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/metabolism , Thiophenes/pharmacology
5.
Prog Neuropsychopharmacol Biol Psychiatry ; 34(6): 1115-9, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20561555

ABSTRACT

Psychostimulant-induced behavioral sensitization is an experimental model of the stimulant psychosis and the vulnerability to relapse in schizophrenia. This study investigated the effects of aripiprazole, an antipsychotic drug that has dopamine D2 receptor partial agonist activity, on established sensitization induced by methamphetamine (MAP) in mice. Repeated treatment with MAP (1.0mg/kg, s.c.) for 10 days progressively increased the ability of MAP to increase locomotor activity. The enhanced locomotion induced by a challenge dose of MAP (0.24 mg/kg, s.c.) also occurred after withdrawal from MAP pretreatment. Repeated treatment with aripiprazole from days 10 to 14 during withdrawal from MAP administration attenuated the effect of MAP pretreatment, enhancing the motor response to a challenge dose of stimulant 3 days after the aripiprazole preparation. In contrast, sulpiride, a dopamine D2 receptor specific antagonist, and risperidone, a serotonin 5-HT2 and dopamine D2 receptor antagonist, did not show effects similar to aripiprazole. The attenuation effect of aripiprazole was blocked by pretreatment with the specific serotonin 5-HT1A antagonist WAY100635. These results of aripiprazole suggest that the attenuation effect of aripiprazole was mediated by 5-HT1A receptors and imply that aripiprazole may have therapeutic value in treating drug-induced psychosis and schizophrenia.


Subject(s)
Behavior, Animal/drug effects , Methamphetamine/pharmacology , Motor Activity/drug effects , Piperazines/pharmacology , Quinolones/pharmacology , Analysis of Variance , Animals , Antipsychotic Agents/pharmacology , Aripiprazole , Central Nervous System Stimulants/pharmacology , Dopamine Antagonists/pharmacology , Male , Mice , Random Allocation , Sulpiride/pharmacology
6.
Prog Neuropsychopharmacol Biol Psychiatry ; 33(2): 303-7, 2009 Mar 17.
Article in English | MEDLINE | ID: mdl-19138716

ABSTRACT

There is considerable evidence that schizophrenia is associated with immune system dysregulation. For example, blood and cerebrospinal fluid (CSF) levels of proinflammatory cytokines are significantly increased in schizophrenic patients, and their normalization correlates with improvement in psychotic symptoms. In fact, typical and atypical antipsychotics are reported to modulate immune function in in vitro and in vivo studies. In the present study, we examined the anti-inflammatory effect of antipsychotics, clozapine, olanzapine, risperidone and haloperidol, on serum cytokine levels in lipopolysaccharide (LPS)-treated mice. Atypical antipsychotics, such as clozapine, olanzapine and risperidone, but not haloperidol, suppressed tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, and up-regulated IL-10. Moreover, only clozapine, robustly increased the serum levels of IL-10. Clozapine reproduced its anti-inflammatory feature in polyinsinic-polycytidylic acid sodium salt (Poly[I:C])-induced inflammation. Thus, the anti-inflammatory effect of clozapine would adapt to inflammation induced by some varieties of antigens. Several receptor ligands, such as 8-OH-DPAT, ketanserin, prazosin and scopolamine, were also examined as to their anti-inflammatory effects on serum cytokine levels in LPS-treated mice. Ketanserin and prazosin, but not 8-OH-DPAT nor scopolamine, behaved similarly to atypical antipsychotics. However, the remarkable increase of serum IL-10 level observed in clozapine was not detected in ketanserin and prazosin. These results suggest the unique efficacy of atypical antipsychotics in the suppression of proinflammatory cytokines, and the increase of anti-inflammatory cytokine, IL-10.


Subject(s)
Antipsychotic Agents/pharmacology , Cytokines/biosynthesis , Interleukin-10/biosynthesis , Lipopolysaccharides/pharmacology , Animals , Benzodiazepines/pharmacology , Clozapine/pharmacology , Cytokines/antagonists & inhibitors , Haloperidol/pharmacology , Interleukin-6/biosynthesis , Male , Mice , Mice, Inbred BALB C , Olanzapine , Poly I-C/pharmacology , Risperidone/pharmacology , Serotonin Antagonists/pharmacology , Tumor Necrosis Factor-alpha/biosynthesis
7.
Neurosci Res ; 63(1): 72-5, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18977253

ABSTRACT

We evaluated the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6N mice fed a magnesium (Mg(2+))-deficient diet. On the 3rd week, Mg(2+)-deficient mice displayed increased anxiety- and depression-like behavior. In the Mg(2+)-deficient mice, a low does (10mg/kg) of MPTP treatment decreased dopamine (DA) and its metabolites contents in the striatum, but not in control mice. The same dose of MPTP did not influence these neurochemical markers in the mice fed Mg(2+)-deficient diet for 1 week which did not exhibit the altered emotional behavior. These results indicate that Mg(2+)-deficient mice with altered emotional behavior appear to increase the susceptibility to MPTP neurotoxicity in C57BL/6N mice.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Magnesium Deficiency/metabolism , Magnesium/metabolism , Parkinsonian Disorders/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Causality , Corpus Striatum/drug effects , Corpus Striatum/physiopathology , Disease Models, Animal , Dopamine Agents/pharmacology , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Down-Regulation/physiology , Emotions/drug effects , Emotions/physiology , Magnesium Deficiency/complications , Magnesium Deficiency/physiopathology , Male , Mice , Mice, Inbred C57BL , Parkinsonian Disorders/etiology , Parkinsonian Disorders/physiopathology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/physiopathology
8.
J Pharmacol Sci ; 103(3): 299-308, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17341843

ABSTRACT

It has recently been suggested that neurogenesis in the dentate gyrus is decreased in schizophrenia and this phenomenon may contribute to the pathogenesis of the disorder. Since repeated administration of psychostimulants such as phencyclidine (PCP), MK-801, and methamphetamine (METH) induces schizophrenia-like behavioral changes in animals, we investigated whether repeated administration of these psychostimulants affects neurogenesis in the dentate gyrus of mice. Newborn cells were labeled by bromodeoxyuridine (BrdU) and detected by immunohistochemistry. Repeated administration of PCP and MK-801, but not METH, resulted in a decrease in the number of BrdU-labeled cells in the dentate gyrus. PCP-induced decrease in the number of BrdU-labeled cells was negated by co-administration of clozapine, but not haloperidol, although repeated antipsychotics treatment by themselves had no effect. Furthermore, co-administration of D-serine and glycine, but not L-serine, inhibited the PCP-induced decrease in the number of BrdU-labeled cells. These results suggest that chronic dysfunction of NMDA receptors causes a decrease in neurogenesis in the dentate gyrus.


Subject(s)
Clozapine/administration & dosage , Excitatory Amino Acid Antagonists/administration & dosage , Neurons/drug effects , Phencyclidine/administration & dosage , Animals , Dentate Gyrus/cytology , Dentate Gyrus/drug effects , Male , Mice , Mice, Inbred ICR , Neurons/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...