Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4719, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849351

ABSTRACT

Evergreeness is a substantial strategy for temperate and boreal plants and is as common as deciduousness. However, whether evergreen plants switch foliage functions between seasons remains unknown. We conduct an in natura study of leaf senescence control in the evergreen perennial, Arabidopsis halleri. A four-year census of leaf longevity of 102 biweekly cohorts allows us to identify growth season (GS) and overwintering (OW) cohorts characterised by short and extended longevity, respectively, and to recognise three distinct periods in foliage functions, i.e., the growth, overwintering, and reproductive seasons. Photoperiods during leaf expansion separate the GS and OW cohorts, providing primal control of leaf senescence depending on the season, with leaf senescence being shut down during winter. Phenotypic and transcriptomic responses in field experiments indicate that shade-induced and reproductive-sink-triggered senescence are active during the growth and reproductive seasons, respectively. These secondary controls of leaf senescence cause desynchronised and synchronised leaf senescence during growth and reproduction, respectively. Conclusively, seasonal switching of leaf senescence optimises resource production, storage, and translocation for the season, making the evergreen strategy adaptively relevant.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Photoperiod , Plant Leaves , Plant Senescence , Seasons , Arabidopsis/physiology , Arabidopsis/growth & development , Arabidopsis/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Transcriptome , Reproduction/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Phenotype
2.
Nat Commun ; 14(1): 5792, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37737204

ABSTRACT

Long-term field monitoring of leaf pigment content is informative for understanding plant responses to environments distinct from regulated chambers but is impractical by conventional destructive measurements. We developed PlantServation, a method incorporating robust image-acquisition hardware and deep learning-based software that extracts leaf color by detecting plant individuals automatically. As a case study, we applied PlantServation to examine environmental and genotypic effects on the pigment anthocyanin content estimated from leaf color. We processed >4 million images of small individuals of four Arabidopsis species in the field, where the plant shape, color, and background vary over months. Past radiation, coldness, and precipitation significantly affected the anthocyanin content. The synthetic allopolyploid A. kamchatica recapitulated the fluctuations of natural polyploids by integrating diploid responses. The data support a long-standing hypothesis stating that allopolyploids can inherit and combine the traits of progenitors. PlantServation facilitates the study of plant responses to complex environments termed "in natura".


Subject(s)
Anthocyanins , Arabidopsis , Humans , Arabidopsis/genetics , Diploidy , Machine Learning , Polyploidy , Seasons
3.
Plant Direct ; 4(9): e00262, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32995701

ABSTRACT

Trichomes are large epidermal cells on the surface of leaves that are thought to deter herbivores, yet the presence of trichomes can also negatively impact plant growth and reproduction. Stomatal guard cells and trichomes have shared developmental origins, and experimental manipulation of trichome formation can lead to changes in stomatal density. The influence of trichome formation upon stomatal development in natural populations of plants is currently unknown. Here, we show that a natural population of Arabidopsis halleri that includes hairy (trichome-bearing) and glabrous (no trichomes) morphs has differences in stomatal density that are associated with this trichome dimorphism. We found that glabrous morphs had significantly greater stomatal density and stomatal index than hairy morphs. One interpretation is that this arises from a trade-off between the proportions of cells that have trichome and guard cell fates during leaf development. The differences in stomatal density between the two morphs might have impacts upon environmental adaptation, in addition to herbivory deterrence caused by trichome development.

4.
ISME J ; 14(2): 506-518, 2020 02.
Article in English | MEDLINE | ID: mdl-31664159

ABSTRACT

Persistent infection, wherein a pathogen is continually present in a host individual, is widespread in virus-host systems. However, little is known regarding how seasonal environments alter virus-host interaction during such metastability. We observed a lineage-to-lineage infection of the host plant Arabidopsis halleri with Turnip mosaic virus for 3 years without severe damage. Virus dynamics and virus-host interactions within hosts were highly season dependent. Virus accumulation in the newly formed leaves was temperature dependent and was suppressed during winter. Transcriptome analyses suggested that distinct defence mechanisms, i.e. salicylic acid (SA)-dependent resistance and RNA silencing, were predominant during spring and autumn, respectively. Transcriptomic difference between infected and uninfected plants other than defence genes appeared transiently only during autumn in upper leaves. However, the virus preserved in the lower leaves is transferred to the clonal offspring of the host plants during spring. In the linage-to-linage infection of the A. halleri-TuMV system, both host clonal reproduction and virus transmission into new clonal rosettes are secured during the winter-spring transition. How virus and host overwinter turned out to be critical for understanding a long-term virus-host interaction within hosts under temperate climates, and more generally, understanding seasonality provides new insight into ecology of plant viruses.


Subject(s)
Arabidopsis , Potyvirus/growth & development , Seasons , Arabidopsis/genetics , Arabidopsis/virology , Gene Expression , Host-Pathogen Interactions/genetics , Plant Diseases , Plant Viruses/growth & development , Virus Diseases
5.
Nat Plants ; 5(3): 329, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30737451

ABSTRACT

In Fig. 3b of the version of this Article originally published, a number of arrows indicating repression of downstream processes were mistakenly formatted as arrows indicating activation of downstream processes. This has now been amended in all versions of the Article.

6.
Nat Plants ; 5(1): 74-83, 2019 01.
Article in English | MEDLINE | ID: mdl-30617252

ABSTRACT

As most organisms have evolved in seasonal environments, their environmental responses should be adapted to seasonal transitions. Here we show that the combination of temperature and day length shapes the seasonal dynamics of the transcriptome and adaptation to seasonal environments in a natural habitat of a perennial plant Arabidopsis halleri subsp. gemmifera. Weekly transcriptomes for two years and bihourly diurnal transcriptomes on the four equinoxes/solstices, identified 2,879 and 7,185 seasonally- and diurnally-oscillating genes, respectively. Dominance of annual temperature changes for defining seasonal oscillations of gene expressions was indicated by controlled environment experiments manipulating the natural 1.5-month lag of temperature behind day length. We found that plants have higher fitness in 'natural' chambers than in 'unnatural' chambers simulating in-phase and anti-phase oscillations between temperature and day length. Seasonal temperature responses were disturbed in unnatural chambers. Our results demonstrate how plants use multiple types of environmental information to adapt to seasonal environments.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Arabidopsis/genetics , Circadian Rhythm/genetics , Ecosystem , Flowers/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Interrupted Time Series Analysis , Photoperiod , Seasons , Temperature
7.
Methods Mol Biol ; 1830: 41-57, 2018.
Article in English | MEDLINE | ID: mdl-30043363

ABSTRACT

The majority of organismal phenomena show functional significance in the context of natural environments. However, we know little about how dynamic gene expression is controlled under natural complex conditions. One of the most attractive challenges in current biology is to understand organismal functions in natural environments. We established and have developed long-term "in natura" study sites of Arabidopsis halleri to evaluate precise control of gene expression in natural environments. At the sites, we monitored meteorological factors, recorded plant growth and phenology, and collected RNA and chromatin samples to investigate dynamics of transcription and epigenetic modifications. Here, we introduce the in natura study sites, especially with the emphasis on methodologies for setting up study sites in natural plant populations and collecting samples used in transcriptomics and epigenetics in natural environments. Although the methods introduced here need to be modified depending on situations of one's study systems, our case can be a model for planning new in natura studies.


Subject(s)
Arabidopsis/genetics , Environment , Epigenesis, Genetic , Transcription, Genetic , Gene Expression Regulation, Plant , Histones/metabolism
8.
J Plant Res ; 121(1): 65-8, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17982712

ABSTRACT

The breeding system of an annual Cruciferae, Arabidopsis kamchatica subsp. kawasakiana, was studied in three natural populations. We applied four experimental treatments, open pollination, bagging, emasculation + bagging, and emasculation + hand-pollination + bagging. None of the emasculated flowers with bags produced fruits but we observed high fruit sets in the other three treatments. The results confirmed that A. kamchatica subsp. kawasakiana is a self-compatible, non-apomictic species that can produce seeds through auto-pollination. Considering the life cycle as an annual, increased reproductive assurance through auto-pollination should be critical for the maintenance of populations of A. kamchatica subsp. kawasakiana.


Subject(s)
Arabidopsis/physiology , Animals , Coleoptera/physiology , Flowers/physiology , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...