Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
iScience ; 27(6): 109940, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38832024

ABSTRACT

SARM1 is a Toll-IL-1 receptor (TIR) domain-containing protein with roles in innate immunity and neuronal death in diverse organisms. Unlike other innate immune TIR proteins that function as adaptors for Toll-like receptors (TLRs), SARM1 has NADase activity, and this activity regulates murine neuronal cell death. However, whether human SARM1, and its NADase activity, are involved in innate immune regulation remains unclear. Here, we show that human SARM1 regulates proinflammatory cytokine expression in both an NADase-dependent and -independent manner in monocytes. SARM1 negatively regulated TLR4-dependent TNF mRNA induction independently of its NADase activity. In contrast, SARM1 inhibited IL-1ß secretion through both NADase-dependent inhibition of pro-IL-1ß expression, and NADase-independent suppression of the NLRP3 inflammasome and hence processing of pro-IL-1ß to mature IL-1ß. Our study reveals multiple mechanisms whereby SARM1 regulates pro-inflammatory cytokines in human monocytes and shows, compared to other mammalian TIR proteins, a distinct NADase-dependent role for SARM1 in innate immunity.

3.
Cell Death Dis ; 15(2): 131, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346958

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most lethal forms of cancer. Although in the last decade, an increase in 5-year patient survival has been observed, the mortality rate remains high. As a first-line treatment for PDAC, gemcitabine alone or in combination (gemcitabine plus paclitaxel) has been used; however, drug resistance to this regimen is a growing issue. In our previous study, we reported MYC/glutamine dependency as a therapeutic target in gemcitabine-resistant PDAC secondary to deoxycytidine kinase (DCK) inactivation. Moreover, enrichment of oxidative phosphorylation (OXPHOS)-associated genes was a common property shared by PDAC cell lines, and patient clinical samples coupled with low DCK expression was also demonstrated, which implicates DCK in cancer metabolism. In this article, we reveal that the expression of most genes encoding mitochondrial complexes is remarkably upregulated in PDAC patients with low DCK expression. The DCK-knockout (DCK KO) CFPAC-1 PDAC cell line model reiterated this observation. Particularly, OXPHOS was functionally enhanced in DCK KO cells as shown by a higher oxygen consumption rate and mitochondrial ATP production. Electron microscopic observations revealed abnormal mitochondrial morphology in DCK KO cells. Furthermore, DCK inactivation exhibited reactive oxygen species (ROS) reduction accompanied with ROS-scavenging gene activation, such as SOD1 and SOD2. SOD2 inhibition in DCK KO cells clearly induced cell growth suppression. In combination with increased anti-apoptotic gene BCL2 expression in DCK KO cells, we finally reveal that venetoclax and a mitochondrial complex I inhibitor are therapeutically efficacious for DCK-inactivated CFPAC-1 cells in in vitro and xenograft models. Hence, our work provides insight into inhibition of mitochondrial metabolism as a novel therapeutic approach to overcome DCK inactivation-mediated gemcitabine resistance in PDAC patient treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Deoxycytidine Kinase/antagonists & inhibitors , Deoxycytidine Kinase/metabolism , Drug Resistance, Neoplasm/genetics , Gemcitabine/pharmacology , Gemcitabine/therapeutic use , Paclitaxel/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Reactive Oxygen Species/metabolism
4.
J Biol Chem ; 300(2): 105620, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176648

ABSTRACT

Sterile alpha and HEAT/armadillo motif-containing protein (SARM1) was recently described as a NAD+-consuming enzyme and has previously been shown to regulate immune responses in macrophages. Neuronal SARM1 is known to contribute to axon degeneration due to its NADase activity. However, how SARM1 affects macrophage metabolism has not been explored. Here, we show that macrophages from Sarm1-/- mice display elevated NAD+ concentrations and lower cyclic ADP-ribose, a known product of SARM1-dependent NAD+ catabolism. Further, SARM1-deficient macrophages showed an increase in the reserve capacity of oxidative phosphorylation and glycolysis compared to WT cells. Stimulation of macrophages to a proinflammatory state by lipopolysaccharide (LPS) revealed that SARM1 restricts the ability of macrophages to upregulate glycolysis and limits the expression of the proinflammatory gene interleukin (Il) 1b, but boosts expression of anti-inflammatory Il10. In contrast, we show macrophages lacking SARM1 induced to an anti-inflammatory state by IL-4 stimulation display increased oxidative phosphorylation and glycolysis, and reduced expression of the anti-inflammatory gene, Fizz1. Overall, these data show that SARM1 fine-tunes immune gene transcription in macrophages via consumption of NAD+ and altered macrophage metabolism.


Subject(s)
Armadillo Domain Proteins , Cytoskeletal Proteins , Neurons , Animals , Mice , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Axons/metabolism , Cyclic ADP-Ribose/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , NAD/metabolism , Neurons/metabolism
5.
Urolithiasis ; 51(1): 119, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37801093

ABSTRACT

The global incidence of ureteroliths in humans is increasing, particularly posing a problem in developed countries. The most common stone type is calcium oxalate, which is associated with a high recurrence rate. In veterinary medicine, stones are the most common cause of ureteral obstruction in cats, accounting for 72-87% of cases. In cats, stones cause irreversible ureteral damage, necessitating stone treatment as well as ureteral therapy. However, the mechanisms underlying the ureteral damage caused by stones remain unclear. Therefore, this study aimed to create a mouse model suitable for studying the ureteral fibrosis caused by oxalate stones by artificially embedding calcium oxalate in the ureter. Pathological tissue analysis was used to compare normal ureters without ligation and ureters with sham or oxalate bead implantation. The ureters of the sham and oxalate bead groups showed granulation tissue formation, transitional epithelium exfoliation, and densely packed connective tissue in the proprietary and muscle layer regions. Particularly in the oxalate bead group, infiltration of degenerated neutrophils, presence of foreign body giant cells, and hyperplasia of the transitional epithelium were observed. The proportion of fibrosis was higher in the oxalate group than in the sham group. Overall, this mouse model created using oxalate bead implantation has the potential to efficiently induce ureteral obstruction. This mouse model is expected to be used for elucidating the molecular mechanisms of ureteral fibrosis and evaluating therapeutic drugs in future.


Subject(s)
Ureter , Ureteral Obstruction , Humans , Mice , Cats , Animals , Ureter/pathology , Calcium Oxalate/analysis , Ureteral Obstruction/complications , Mice, Inbred C57BL , Oxalates , Fibrosis
6.
Cell Rep ; 40(6): 111167, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35947948

ABSTRACT

Many bacterial pathogens antagonize host defense responses by translocating effector proteins into cells. It remains an open question how those pathogens not encoding effectors counteract anti-bacterial immunity. Here, we show that Klebsiella pneumoniae exploits the evolutionary conserved innate protein SARM1 to regulate negatively MyD88- and TRIF-governed inflammation, and the activation of the MAP kinases ERK and JNK. SARM1 is required for Klebsiella induction of interleukin-10 (IL-10) by fine-tuning the p38-type I interferon (IFN) axis. SARM1 inhibits the activation of Klebsiella-induced absent in melanoma 2 inflammasome to limit IL-1ß production, suppressing further inflammation. Klebsiella exploits type I IFNs to induce SARM1 in a capsule and lipopolysaccharide O-polysaccharide-dependent manner via the TLR4-TRAM-TRIF-IRF3-IFNAR1 pathway. Absence of SARM1 reduces the intracellular survival of K. pneumoniae in macrophages, whereas sarm1-deficient mice control the infection. Altogether, our results illustrate an anti-immunology strategy deployed by a human pathogen. SARM1 inhibition will show a beneficial effect to treat Klebsiella infections.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Adaptor Proteins, Vesicular Transport , Animals , Armadillo Domain Proteins/genetics , Cytoskeletal Proteins , Humans , Inflammation , Mice , Signal Transduction
7.
J Biol Chem ; 297(6): 101417, 2021 12.
Article in English | MEDLINE | ID: mdl-34793837

ABSTRACT

SARM1 is a toll/interleukin-1 receptor -domain containing protein, with roles proposed in both innate immunity and neuronal degeneration. Murine SARM1 has been reported to regulate the transcription of chemokines in both neurons and macrophages; however, the extent to which SARM1 contributes to transcription regulation remains to be fully understood. Here, we identify differential gene expression in bone-marrow-derived macrophages (BMDMs) from C57BL/6 congenic 129 ES cell-derived Sarm1-/- mice compared with wild type (WT). However, we found that passenger genes, which are derived from the 129 donor strain of mice that flank the Sarm1 locus, confound interpretation of the results, since many of the identified differentially regulated genes come from this region. To re-examine the transcriptional role of SARM1 in the absence of passenger genes, here we generated three Sarm1-/- mice using CRISPR/Cas9. Treatment of neurons from these mice with vincristine, a chemotherapeutic drug causing axonal degeneration, confirmed SARM1's function in that process; however, these mice also showed that lack of SARM1 has no impact on transcription of genes previously shown to be affected such as chemokines. To gain further insight into SARM1 function, we generated an epitope-tagged SARM1 mouse. In these mice, we observed high SARM1 protein expression in the brain and brainstem and lower but detectable levels in macrophages. Overall, the generation of these SARM1 knockout and epitope-tagged mice has clarified that SARM1 is expressed in mouse macrophages yet has no general role in macrophage transcriptional regulation and has provided important new models to further explore SARM1 function.


Subject(s)
Armadillo Domain Proteins , CRISPR-Cas Systems , Cytoskeletal Proteins , Epitopes , Gene Expression Regulation , Macrophages/metabolism , Transcription, Genetic , Animals , Armadillo Domain Proteins/biosynthesis , Armadillo Domain Proteins/genetics , Cytoskeletal Proteins/biosynthesis , Cytoskeletal Proteins/genetics , Epitopes/genetics , Epitopes/metabolism , Mice , Mice, Knockout , Neurons/metabolism , Vincristine/metabolism
8.
Immunity ; 50(6): 1412-1424.e6, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31076360

ABSTRACT

Assembly of inflammasomes after infection or injury leads to the release of interleukin-1ß (IL-1ß) and to pyroptosis. After inflammasome activation, cells either pyroptose or enter a hyperactivated state defined by IL-1ß secretion without cell death, but what controls these different outcomes is unknown. Here, we show that removal of the Toll-IL-1R protein SARM from macrophages uncouples inflammasome-dependent cytokine release and pyroptosis, whereby cells displayed increased IL-1ß production but reduced pyroptosis. Correspondingly, increasing SARM in cells caused less IL-1ß release and more pyroptosis. SARM suppressed IL-1ß by directly restraining the NLRP3 inflammasome and, hence, caspase-1 activation. Consistent with a role for SARM in pyroptosis, Sarm1-/- mice were protected from lipopolysaccharide (LPS)-stimulated sepsis. Pyroptosis-inducing, but not hyperactivating, NLRP3 stimulants caused SARM-dependent mitochondrial depolarization. Thus, SARM-dependent mitochondrial depolarization distinguishes NLRP3 activators that cause pyroptosis from those that do not, and SARM modulation represents a cell-intrinsic mechanism to regulate cell fate after inflammasome activation.


Subject(s)
Armadillo Domain Proteins/metabolism , Cytokines/metabolism , Cytoskeletal Proteins/metabolism , Inflammasomes/metabolism , Animals , Armadillo Domain Proteins/genetics , Biomarkers , Cell Survival , Cytoskeletal Proteins/genetics , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Binding , Pyroptosis , Signal Transduction
9.
Sci Rep ; 8(1): 13157, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30177770

ABSTRACT

Tissue macrophage-derived apoptosis inhibitor of macrophage (AIM, encoded by cd5l gene) is a circulating protein that has suppressive functions in a broad range of diseases including obesity, liver steatosis, hepatocellular carcinoma (HCC), and acute kidney injury (AKI). In healthy states, high levels of AIM circulate in the inactivated state by associating with the immunoglobulin M (IgM) pentamer in the blood, whereas during AKI, AIM dissociates from IgM and gains disease repair activity. Here, we assessed whether AIM activation via its release from IgM is required to ameliorate other diseases. To this end, we employed a mouse line in which mouse AIM was replaced with feline AIM (AIM-felinized mice). Because feline AIM rarely dissociates from IgM due to its extremely high binding affinity for IgM, these mice exhibited deficient AKI repair as in cats. When fed a high-fat diet (HFD), similar to AIM-deficient (AIM-/-) mice, AIM-felinized mice exhibited enhanced triacylglycerol deposition in visceral adipocytes and hepatocytes, resulting in more prominent obesity and fatty liver than in wild-type mice. In contrast, the incidence of HCC after a 1-year HFD was remarkably lower in AIM-felinized mice than in AIM-/- mice, suggesting that AIM produced by liver Kupffer macrophages might directly facilitate the elimination of HCC cells. Accordingly, the marked deposition of AIM accompanied by accumulation of Kupffer cells was obvious during HCC tumour development in AIM-felinized mice. Δsµ mice, which harbour almost no circulating AIM due to the lack of secreted IgM, showed a phenotype comparable with that of AIM-felinized mice in prevention of those diseases. Thus, blood AIM released from IgM contributes to suppression of obesity and fatty liver as in AKI, whereas macrophage-derived noncirculating AIM mainly prevents HCC development. Our study depicted two different modes of disease prevention/repair facilitated by AIM, which could be the basis for HCC therapy that works by increasing AIM expression in macrophages.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Carcinoma, Hepatocellular/genetics , Fatty Liver/genetics , Immunoglobulin M/genetics , Liver Neoplasms/genetics , Obesity/genetics , Receptors, Immunologic/genetics , Adipocytes/immunology , Adipocytes/pathology , Animals , Apoptosis Regulatory Proteins/blood , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/prevention & control , Cats , Diet, High-Fat/adverse effects , Disease Resistance/genetics , Fatty Liver/etiology , Fatty Liver/immunology , Gene Expression Regulation , Hepatocytes/immunology , Hepatocytes/pathology , Immunoglobulin M/blood , Kupffer Cells/immunology , Kupffer Cells/pathology , Liver Neoplasms/etiology , Liver Neoplasms/immunology , Liver Neoplasms/prevention & control , Mice , Mice, Transgenic , Obesity/etiology , Obesity/immunology , Protein Binding , Receptors, Immunologic/blood , Signal Transduction , Transgenes
10.
Cell Mol Immunol ; 15(6): 563-574, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29375122

ABSTRACT

Circulating immunoglobulin M (IgM) exists in a pentameric form, possessing a polyreactive nature that responds not only to foreign antigens but also to autoantigens; thus, it is involved in both beneficial and detrimental immune responses, including protection from infection and the progression of autoimmunity. On the other hand, IgM also behaves as a carrier of the apoptosis inhibitor of macrophage (AIM) protein, storing a large amount of the inactivated form of AIM in the blood through this association. Under different disease conditions, AIM can dissociate from IgM locally or systemically to exert its function, inducing the removal of various biological debris such as excess fat, bacteria, cancer cells or dead cell debris. Most typically, upon induction of acute kidney injury (AKI), IgM-free AIM is filtered by the glomerulus in the kidney, which stimulates the clearance of intraluminal dead cells debris at the obstructed proximal tubules, thereby facilitating the repair of kidney injury. Interestingly, cats exhibit a deficiency in AIM release from IgM, which may increase their susceptibility to renal failure. Conversely, association with AIM inhibits IgM binding to the Fcα/µ receptor on follicular dendritic cells at the splenic germinal center, thereby protecting the IgM immune complex from Fcα/µ receptor-mediated internalization, which supports IgM-dependent antigen presentation to B cells and stimulates high-affinity IgG antibody production. The regulation of AIM-IgM binding, resulting from the discovery of reciprocal actions between AIM and IgM, could lead to the development of novel therapies against different diseases.


Subject(s)
Immunoglobulin M/metabolism , Receptors, Scavenger/metabolism , Acute Kidney Injury/blood , Acute Kidney Injury/immunology , Acute Kidney Injury/pathology , Acute Kidney Injury/urine , Animals , Autoantibodies/blood , Disease Progression , Humans , Immunoglobulin M/blood , Immunoglobulin M/chemistry , Immunoglobulin M/urine , Receptors, Scavenger/chemistry
11.
Sci Rep ; 6: 38762, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929116

ABSTRACT

Apoptosis inhibitor of macrophage (AIM, encoded by cd5l) is a multi-functional circulating protein that has a beneficial role in the regulation of a broad range of diseases, some of which are ameliorated by AIM administration in mice. In blood, AIM is stabilized by association with IgM pentamers and maintains its high circulating levels. The mechanism regulating the excessive accumulation of blood AIM remains unknown, although it is important, since a constitutive increase in AIM levels promotes chronic inflammation. Here we found a physiological AIM-cleavage process that induces destabilization of AIM and its excretion in urine. In blood, IgM-free AIM appeared to be cleaved and reduced in size approximately 10 kDa. Cleaved AIM was unable to bind to IgM and was selectively filtered by the glomerulus, thereby excreted in urine. Amino acid substitution at the cleavage site resulted in no renal excretion of AIM. Interestingly, cleaved AIM retained a comparable potency with full-length AIM in facilitating the clearance of dead cell debris in injured kidney, which is a key response in the recovery of acute kidney injury. Identification of AIM-cleavage and resulting functional modification could be the basis for designing safe and efficient AIM therapy for various diseases.


Subject(s)
Kidney/metabolism , Receptors, Scavenger/metabolism , Animals , Apoptosis Regulatory Proteins , Humans , Mice , Proteolysis , Rats
12.
Sci Rep ; 6: 35251, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27731392

ABSTRACT

Renal failure is one of the most important social problems for its incurability and high costs for patients' health care. Through clarification of the underlying mechanism for the high susceptibility of cats to renal disease, we here demonstrates that the effective dissociation of serum AIM protein from IgM is necessary for the recovery from acute kidney injury (AKI). In cats, the AIM-IgM binding affinity is 1000-fold higher than that in mice, which is caused by the unique positively-charged amino-acid cluster present in feline AIM. Hence, feline AIM does not dissociate from IgM during AKI, abolishing its translocation into urine. This results in inefficient clearance of lumen-obstructing necrotic cell debris at proximal tubules, thereby impairing AKI recovery. Accordingly, mice whose AIM is replaced by feline AIM exhibit higher mortality by AKI than in wild-type mice. Recombinant AIM administration into the mice improves their renal function and survival. As insufficient recovery from AKI predisposes patients to chronic, end-stage renal disease, feline AIM may be involved crucially in the high mortality of cats due to renal disease. Our findings could be the basis of the development of novel AKI therapies targeting AIM-IgM dissociation, and may support renal function in cats and prolong their lives.


Subject(s)
Antigens, CD/chemistry , Antigens, Differentiation, T-Lymphocyte/chemistry , Cat Diseases/etiology , Kidney Diseases/veterinary , Lectins, C-Type/chemistry , Amino Acid Sequence , Animals , Cats , Disease Susceptibility , Sequence Homology, Amino Acid
13.
Nat Med ; 22(2): 183-93, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26726878

ABSTRACT

Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1-deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI.


Subject(s)
Acute Kidney Injury/genetics , Apoptosis Regulatory Proteins/genetics , Kidney Tubules, Proximal/metabolism , Kidney/metabolism , Macrophages/metabolism , Phagocytosis/genetics , Receptors, Immunologic/genetics , Receptors, Scavenger/metabolism , Reperfusion Injury/genetics , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Aged , Aged, 80 and over , Animals , Enzyme-Linked Immunosorbent Assay , Female , HEK293 Cells , Hepatitis A Virus Cellular Receptor 1 , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Kidney/pathology , Male , Membrane Proteins , Mice , Mice, Knockout , Middle Aged , Necrosis , Real-Time Polymerase Chain Reaction , Reperfusion Injury/complications , Reperfusion Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...