Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37645974

ABSTRACT

SNARE and Sec/Munc18 proteins are essential in synaptic vesicle exocytosis. Open form t-SNARE syntaxin and UNC-18 P334A are well-studied exocytosis-enhancing mutants. Here we investigate the interrelationship between the two mutations by generating double mutants in various genetic backgrounds in C. elegans. While each single mutation rescued the motility of CAPS/unc-31 and synaptotagmin/snt-1 mutants significantly, double mutations unexpectedly worsened motility or lost their rescuing effects. Electrophysiological analyses revealed that simultaneous mutations of open syntaxin and gain-of-function P334A UNC-18 induces a strong imbalance of excitatory over inhibitory transmission. In liposome fusion assays performed with mammalian proteins, the enhancement of fusion caused by the two mutations individually was abolished when the two mutations were introduced simultaneously, consistent with what we observed in C. elegans. We conclude that open syntaxin and P334A UNC-18 do not have additive beneficial effects, and this extends to C. elegans' characteristics such as motility, growth, offspring bared, body size, and exocytosis, as well as liposome fusion in vitro. Our results also reveal unexpected differences between the regulation of exocytosis in excitatory versus inhibitory synapses.

2.
Nat Commun ; 11(1): 5516, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139696

ABSTRACT

Assembly of SNARE complexes that mediate neurotransmitter release requires opening of a 'closed' conformation of UNC-64/syntaxin. Rescue of unc-13/Munc13 mutant phenotypes by overexpressed open UNC-64/syntaxin suggested a specific function of UNC-13/Munc13 in opening UNC-64/ syntaxin. Here, we revisit the effects of open unc-64/syntaxin by generating knockin (KI) worms. The KI animals exhibit enhanced spontaneous and evoked exocytosis compared to WT animals. Unexpectedly, the open syntaxin KI partially suppresses exocytosis defects of various mutants, including snt-1/synaptotagmin, unc-2/P/Q/N-type Ca2+ channel alpha-subunit and unc-31/CAPS, in addition to unc-13/Munc13 and unc-10/RIM, and enhanced exocytosis in tom-1/Tomosyn mutants. However, open syntaxin aggravates the defects of unc-18/Munc18 mutants. Correspondingly, open syntaxin partially bypasses the requirement of Munc13 but not Munc18 for liposome fusion. Our results show that facilitating opening of syntaxin enhances exocytosis in a wide range of genetic backgrounds, and may provide a general means to enhance synaptic transmission in normal and disease states.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Exocytosis/genetics , Liposomes/metabolism , Synaptic Transmission/genetics , Syntaxin 1/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Gene Knock-In Techniques , Mutation , Neurotransmitter Agents/metabolism , Syntaxin 1/genetics
3.
J Immunol ; 201(2): 700-713, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29884704

ABSTRACT

In the immune system, degranulation/exocytosis from lymphocytes is crucial for life through facilitating eradication of infected and malignant cells. Dysfunction of the NK cell exocytosis process has been implicated with devastating immune diseases, such as familial hemophagocytic lymphohistiocytosis, yet the underlying molecular mechanisms of such processes have remained elusive. In particular, although the lytic granule exocytosis from NK cells is strictly Ca2+-dependent, the molecular identity of the Ca2+ sensor has yet to be identified. In this article, we show multiple lines of evidence in which point mutations in aspartic acid residues in both C2 domains of human Munc13-4, whose mutation underlies familial hemophagocytic lymphohistiocytosis type 3, diminished exocytosis with dramatically altered Ca2+ sensitivity in both mouse primary NK cells as well as rat mast cell lines. Furthermore, these mutations within the C2 domains severely impaired NK cell cytotoxicity against malignant cells. Total internal reflection fluorescence microscopy analysis revealed that the mutations strikingly altered Ca2+ dependence of fusion pore opening of each single granule and frequency of fusion events. Our results demonstrate that both C2 domains of Munc13-4 play critical roles in Ca2+-dependent exocytosis and cytotoxicity by regulating single-granule membrane fusion dynamics in immune cells.


Subject(s)
Killer Cells, Natural/immunology , Lymphohistiocytosis, Hemophagocytic/immunology , Mast Cells/immunology , Membrane Proteins/metabolism , Secretory Vesicles/metabolism , Animals , Aspartic Acid/genetics , Calcium Signaling , Cell Degranulation , Cells, Cultured , Cytotoxicity, Immunologic , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation/genetics , Protein Domains/genetics , Rats
4.
Cell Rep ; 23(10): 2955-2966, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29874582

ABSTRACT

Trafficking of neurotransmitter receptors on postsynaptic membranes is critical for basal neurotransmission and synaptic plasticity, yet the underlying mechanisms remain elusive. Here, we investigated the role of syntaxin 4 in postsynaptic hippocampal CA1 neurons by analyzing conditional knockout (syntaxin 4 cKO) mice. We show that syntaxin 4 cKO resulted in reduction of basal neurotransmission without changes in paired-pulse ratios. Both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptor-mediated charge transfers were diminished. Patch-clamp experiments revealed that amplitudes, but not frequencies, of spontaneous excitatory postsynaptic currents are reduced. Syntaxin 4 knockout (KO) caused drastic reduction in expression of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptors in cultured hippocampal neurons. Furthermore, cKO caused defects in theta-burst stimulation induced long-term potentiation and spatial learning as assessed by a water maze task, indicating that synaptic plasticity was altered. Our data reveal a crucial role of syntaxin 4 in trafficking of ionotropic glutamate receptors that are essential for basal neurotransmission, synaptic plasticity, and spatial memory.


Subject(s)
CA1 Region, Hippocampal/physiology , Neuronal Plasticity , Neurons/physiology , Qa-SNARE Proteins/metabolism , Synapses/metabolism , Synaptic Transmission , Animals , Cells, Cultured , Excitatory Postsynaptic Potentials/physiology , Gene Deletion , Long-Term Potentiation/physiology , Mice, Knockout , Organ Specificity , Receptors, AMPA/metabolism , Receptors, Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Spatial Memory
5.
J Neurosci ; 37(36): 8797-8815, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28821673

ABSTRACT

Munc18-1/UNC-18 is believed to prime SNARE-mediated membrane fusion, yet the underlying mechanisms remain enigmatic. Here, we examine how potential gain-of-function mutations of Munc18-1/UNC-18 affect locomotory behavior and synaptic transmission, and how Munc18-1-mediated priming is related to Munc13-1/UNC-13 and Tomosyn/TOM-1, positive and negative SNARE regulators, respectively. We show that a Munc18-1(P335A)/UNC-18(P334A) mutation leads to significantly increased locomotory activity and acetylcholine release in Caenorhabditis elegans, as well as enhanced synaptic neurotransmission in cultured mammalian neurons. Importantly, similar to tom-1 null mutants, unc-18(P334A) mutants partially bypass the requirement of UNC-13. Moreover, unc-18(P334A) and tom-1 null mutations confer a strong synergy in suppressing the phenotypes of unc-13 mutants. Through biochemical experiments, we demonstrate that Munc18-1(P335A) exhibits enhanced activity in SNARE complex formation as well as in binding to the preformed SNARE complex, and partially bypasses the Munc13-1 requirement in liposome fusion assays. Our results indicate that Munc18-1/UNC-18 primes vesicle fusion downstream of Munc13-1/UNC-13 by templating SNARE complex assembly and acts antagonistically with Tomosyn/TOM-1.SIGNIFICANCE STATEMENT At presynaptic sites, SNARE-mediated membrane fusion is tightly regulated by several key proteins including Munc18/UNC-18, Munc13/UNC-13, and Tomosyn/TOM-1. However, how these proteins interact with each other to achieve the precise regulation of neurotransmitter release remains largely unclear. Using Caenorhabditis elegans as an in vivo model, we found that a gain-of-function mutant of UNC-18 increases locomotory activity and synaptic acetylcholine release, that it partially bypasses the requirement of UNC-13 for release, and that this bypass is synergistically augmented by the lack of TOM-1. We also elucidated the biochemical basis for the gain-of-function caused by this mutation. Thus, our study provides novel mechanistic insights into how Munc18/UNC-18 primes synaptic vesicle release and how this protein interacts functionally with Munc13/UNC-13 and Tomosyn/TOM-1.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Carrier Proteins/metabolism , Locomotion/physiology , Phosphoproteins/metabolism , SNARE Proteins/metabolism , Synaptic Transmission/physiology , Vesicular Transport Proteins/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Mutation/genetics , Neurons , Phosphoproteins/genetics , Synaptic Vesicles/metabolism , Vesicular Transport Proteins/genetics
6.
Elife ; 62017 05 06.
Article in English | MEDLINE | ID: mdl-28477408

ABSTRACT

Munc18-1 orchestrates SNARE complex assembly together with Munc13-1 to mediate neurotransmitter release. Munc18-1 binds to synaptobrevin, but the relevance of this interaction and its relation to Munc13 function are unclear. NMR experiments now show that Munc18-1 binds specifically and non-specifically to synaptobrevin. Specific binding is inhibited by a L348R mutation in Munc18-1 and enhanced by a D326K mutation designed to disrupt the 'furled conformation' of a Munc18-1 loop. Correspondingly, the activity of Munc18-1 in reconstitution assays that require Munc18-1 and Munc13-1 for membrane fusion is stimulated by the D326K mutation and inhibited by the L348R mutation. Moreover, the D326K mutation allows Munc13-1-independent fusion and leads to a gain-of-function in rescue experiments in Caenorhabditis elegans unc-18 nulls. Together with previous studies, our data support a model whereby Munc18-1 acts as a template for SNARE complex assembly, and autoinhibition of synaptobrevin binding contributes to enabling regulation of neurotransmitter release by Munc13-1.


Subject(s)
Membrane Fusion , Munc18 Proteins/metabolism , Nerve Tissue Proteins/metabolism , R-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Animals , Calorimetry , Magnetic Resonance Spectroscopy , Rats
7.
Mol Biol Cell ; 27(4): 669-85, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26700321

ABSTRACT

Syntaxin-1 is the central SNARE protein for neuronal exocytosis. It interacts with Munc18-1 through its cytoplasmic domains, including the N-terminal peptide (N-peptide). Here we examine the role of the N-peptide binding in two conformational states ("closed" vs. "open") of syntaxin-1 using PC12 cells and Caenorhabditis elegans. We show that expression of "closed" syntaxin-1A carrying N-terminal single point mutations (D3R, L8A) that perturb interaction with the hydrophobic pocket of Munc18-1 rescues impaired secretion in syntaxin-1-depleted PC12 cells and the lethality and lethargy of unc-64 (C. elegans orthologue of syntaxin-1)-null mutants. Conversely, expression of the "open" syntaxin-1A harboring the same mutations fails to rescue the impairments. Biochemically, the L8A mutation alone slightly weakens the binding between "closed" syntaxin-1A and Munc18-1, whereas the same mutation in the "open" syntaxin-1A disrupts it. Our results reveal a striking interplay between the syntaxin-1 N-peptide and the conformational state of the protein. We propose that the N-peptide plays a critical role in intracellular trafficking of syntaxin-1, which is dependent on the conformational state of this protein. Surprisingly, however, the N-peptide binding mode seems dispensable for SNARE-mediated exocytosis per se, as long as the protein is trafficked to the plasma membrane.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Exocytosis , Munc18 Proteins/metabolism , Neurons/physiology , Syntaxin 1/chemistry , Amino Acid Sequence , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Membrane/metabolism , Gene Knockdown Techniques , Molecular Sequence Data , Neurons/metabolism , PC12 Cells , Peptides/chemistry , Peptides/metabolism , Point Mutation , Protein Binding , Protein Structure, Tertiary , Protein Transport , Rats , Syntaxin 1/genetics , Syntaxin 1/metabolism
8.
J Org Chem ; 75(13): 4492-500, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20515068

ABSTRACT

Chiral macrocycles with the hydrogen bond donor/acceptor sites in the cavity were synthesized and covalently bonded to silica gel to give chiral stationary phases (CSPs), which showed excellent abilities to resolve various chiral compounds including ketones, esters, carboxylic acids, sulfoxides, amines, amino acid derivatives, and metal complexes. The effect of the linker connecting the macrocyclic moiety to silica was examined, and a more electronegative substituent was found to be better. Various organic solvents could be used as the mobile phase to optimize the resolution efficiency of the CSPs. Although the separation factors (alpha) tended to decrease with an increase in the solvent polarity, remarkable solvent tolerance was also observed. In some cases, even MeCN and MeOH could be used for the complete resolution of enantiomers. The MM calculations suggested that the chiral recognition of Co(acac)(3) is achieved by a combination of steric interactions and hydrogen bonds between the carbonyl O atom coordinated to the Co atom and the macrocyclic amide NH groups. The attachment of substituents to the 3,3'-positions of the binaphthyl moiety improved chiral HPLC performance in some cases. In particular, CSP-1d, having the Br atoms, showed the best performance for several analytes.

9.
Org Lett ; 10(12): 2365-8, 2008 Jun 19.
Article in English | MEDLINE | ID: mdl-18491864

ABSTRACT

Chiral macrocycles with the hydrogen bond donor/acceptor sites in the cavity were synthesized and covalently bonded to silica gel to give chiral stationary phases (CSPs), which showed excellent abilities to resolve various chiral compounds, such as benzoin and Co(acac)3, in HPLC. Various organic solvents could be used as the mobile phase to optimize the resolution efficiency of CSPs, and in some cases, even MeCN, MeOH, and CO(2) could be used for the complete resolution of enantiomers.


Subject(s)
Macrocyclic Compounds/chemical synthesis , Benzoin/chemistry , Chromatography, High Pressure Liquid/methods , Hydrogen Bonding , Macrocyclic Compounds/chemistry , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...