Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 37(3): 602-7, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19074526

ABSTRACT

A small GTP-binding protein, Rab8, is essential for apical localization of oligopeptide transporter PEPT1/SLC15A1 and sodium/glucose cotransporter SGLT1/SLC5A1 in small intestine; deficiency of rab8 gene results in mislocalization and reduced expression of these transporters. Here, we examined the role of PEPT1 and SGLT1 in vivo in gastrointestinal absorption of a beta-lactam antibiotic, cefixime, and alpha-methyl-d-glycopyranoside (alpha-MDG), respectively, using rab8 gene knockout [rab8(-/-)] mice as experimental animals deficient in those transporters. Plasma concentration of cefixime and alpha-MDG after oral administration in rab8(-/-) mice was much lower than that in wild-type mice, whereas such reduction in oral absorption was not observed for antipyrine, membrane permeation of which is not transporter-mediated. Uptake of cefixime from the apical side of isolated small intestine assessed by means of the everted sac method in wild-type mice was decreased in the presence of excess unlabeled glycylsarcosine, a PEPT1 substrate. In contrast, the uptake in rab8(-/-) mice was much lower than that in wild-type mice and comparable with that of an extracellular marker, mannitol, suggesting that the apical membrane permeability of cefixime was reduced in rab8(-/-) mice. Uptake of cefixime in wild-type mice was pH-dependent, being higher at lower pH, whereas that in rab8(-/-) mice remained at the background level at all pH values examined. These results suggest that PEPT1 and SGLT1 play an important role in gastrointestinal absorption of cefixime and alpha-MDG, respectively, in vivo in mice. The present findings also illustrate the pharmacokinetic influence of the sorting machinery protein Rab8.


Subject(s)
Cefixime/pharmacokinetics , Intestinal Absorption/physiology , Methylglucosides/pharmacokinetics , Sodium-Glucose Transporter 1/physiology , Symporters/physiology , rab GTP-Binding Proteins/physiology , Animals , Female , Intestine, Small/metabolism , Male , Mice , Mice, Knockout , Peptide Transporter 1 , rab GTP-Binding Proteins/genetics
2.
Mol Pharmacol ; 70(3): 829-37, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16754783

ABSTRACT

The organic cation/carnitine transporter OCTN2 is responsible for renal tubular reabsorption of its endogenous substrate, carnitine, although its physiological role in small intestine remains controversial. Here we present direct evidence for a predominant role of OCTN2 in small intestinal absorption of carnitine based on experiments with juvenile visceral steatosis (jvs) mice, which have a hereditary deficiency of the octn2 gene. Uptake of carnitine, assessed with an Ussing-type chamber system, from the apical surface of the small intestine was saturable and higher than that from the basal surface in wild-type mice, whereas carnitine uptake having these characteristics was almost absent in jvs mice. Saturable uptake of carnitine was also confirmed in isolated enterocytes obtained from wild-type mice, and the Km value obtained (approximately 20 microM) was close to that reported for carnitine uptake by human embryonic kidney 293 cells stably expressing mouse OCTN2 (Slc22a5). The carnitine uptake by enterocytes was decreased in the presence of various types of organic cations, and this inhibition profile was similar to that of mouse OCTN2, whereas uptake of carnitine was quite small and unsaturable in enterocytes obtained from jvs mice. Immunohistochemical and immunoprecipitation analyses suggested colocalization of OCTN2 with PDZK1, an adaptor protein that functionally regulates OCTN2. Immunoelectron microscopy visualized both OCTN2 and PDZK1 in microvilli of absorptive epithelial cells. These findings indicate that OCTN2 is predominantly responsible for the uptake of carnitine from the apical surface of mouse small intestinal epithelial cells, and it may therefore be a promising target for oral delivery of therapeutic agents that are OCTN2 substrates.


Subject(s)
Carnitine/metabolism , Cell Membrane/metabolism , Cell Polarity , Enterocytes/cytology , Intestine, Small/cytology , Organic Cation Transport Proteins/metabolism , Animals , Carrier Proteins/metabolism , Cell Membrane/ultrastructure , Cell Separation , Enterocytes/ultrastructure , Humans , Intestine, Small/ultrastructure , Male , Mice , Mice, Inbred C3H , Microvilli/ultrastructure , Models, Animal , Protein Binding , Protein Transport , Solute Carrier Family 22 Member 5 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...