Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(11): 17464-17475, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154288

ABSTRACT

We propose a new two-stage digital signal processing scheme to suppress the phase distortion that arises from imperfect pump counter-phasing in a dual-pump fibre-based optical phase conjugation system. We demonstrate experimentally and numerically a signal-to-noise ratio improvement of more than 4 dB relative to conventional phase noise compensation, when the proposed scheme is used with 16/64/256 quadrature-amplitude modulation signals at pump-phase mismatch values as large as 8°.

2.
Opt Lett ; 41(23): 5434-5437, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27906206

ABSTRACT

All-optical phase regeneration of a binary phase-shift keying signal is demonstrated at 10-30 Gb/s without a phase-locked loop in a phase-sensitive amplification-based system using Brillouin amplification of the idler. The system achieves phase noise reduction of up to 56% and up to 11 dB OSNR gain at 10-5 bit error rate for the 10 Gb/s signal. The system's sensitivity to different parameters and stability is also evaluated.

3.
Opt Lett ; 41(4): 677-80, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26872161

ABSTRACT

All optical signal level swapping and multilevel amplitude noise mitigation are experimentally demonstrated using the three gain regions of optical parametric amplification, i.e., linear, saturation, and inversion. The two-amplitude-shift-keying and eight-quadrature-amplitude-modulation optical communication systems with baud rates of both 10 and 20 Gbaud have been employed to demonstrate the proposed approaches. Less than 1% error-vector-magnitude degradation is observed after signal level swapping. For amplitude noise mitigation, a more than 20% decrease in amplitude error is confirmed.

4.
Opt Lett ; 40(14): 3328-31, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26176461

ABSTRACT

We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3 dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.

5.
Opt Express ; 22(1): 90-5, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24514969

ABSTRACT

We report the development of a space division multiplexed (SDM) transmission system consisting of a 19-core fiber and 19-core Erbium-doped fiber amplifier (EDFA). A new 19-core fiber with an improved core arrangement was employed to achieve a low aggregated inter-core crosstalk of -42 dB at 1550 nm over 30 km. The EDFA uses shared free-space optics for pump beam combining and isolation, thus is SDM transparent and has some potential for cost reduction. 19.6 dB to 23.3 dB gain and 6.0 dB to 7.0 dB noise figure were obtained for each SDM channel at 1550 nm. System feasibility for SDM transmission over 1200 km was demonstrated with 100 Gb/s PDM-QPSK signals.

6.
Opt Express ; 22(2): 1220-8, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-24515127

ABSTRACT

We show super-Nyquist-WDM transmission technique, where optical signals with duobinary-pulse shaping can be wavelength-multiplexed with frequency spacing of below baudrate. Duobinary-pulse shaping can reduce the signal bandwidth to be a half of baudrate while controlling inter-symbol interference can be compensated by the maximum likelihood sequence estimation in a receiver. First, we experimentally evaluate crosstalk characteristics as a function of channel spacing between the dual-channel DP-QPSK signals with duobinary-pulse shaping. As a result, the crosstalk penalty can be almost negligible as far as the ratio of baudrate to frequency spacing is maintained to be less than 1.20. Next, we demonstrate 140.7-Tbit/s, 7,326-km transmission of 7 × 201-channel 25-GHz-spaced super-Nyquist-WDM 100-Gbit/s optical signals using seven-core fiber and full C-band seven-core EDFAs. To the best of our knowledge, this is one of the first reports of high-capacity transmission experiments with capacity-distance product in excess of 1 Exabit/s · km.

7.
Opt Express ; 21(15): 18053-60, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-23938676

ABSTRACT

We confirm the feasibility of 100-Tbit/s-class trans-oceanic SDM transmission. Using seven-core fiber spans with seven-core full C-band EDFAs, 7 × 264-channel quasi-Nyquist-WDM 60-Gbit/s PDM-QPSK signals are transmitted over 6,370 km.


Subject(s)
Fiber Optic Technology/instrumentation , Optical Devices , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Feasibility Studies
8.
Opt Express ; 21(24): 29157-64, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24514467

ABSTRACT

We have greatly increased the dynamic range of a synchronous multi-channel OTDR system for the mode coupling measurement of a multi-core fiber (MCF) by more than 20 dB by introducing an optical amplifier and an optical masking apparatus. We used the OTDR system to measure the mode coupling along 10 km-long MCFs with low crosstalks of less than -50 dB. Thus, we successfully measured the fiber structural irregularity dependence of mode coupling along the MCF.

9.
Opt Express ; 19(11): 10595-603, 2011 May 23.
Article in English | MEDLINE | ID: mdl-21643313

ABSTRACT

To realize large effective area (Aeff) multi-core fibers (MCFs), the design to suppress the cross-talk and the influence of the cladding diameter on the micro bending loss were investigated. As a result, the MCFs with large Aeff over 100 µm(2) and low micro bending loss were successfully fabricated. The results indicate the importance of fiber design to realize large Aeff MCFs including fiber diameters, which largely affect the micro bending loss property. Additionally, MCF with large Aeff, low attenuation loss and suppressed cross-talk was successfully realized by optimizing the fiber design. The cross-talk properties could be estimated by the simulation based on the coupling power theory taking the influences of the longitudinal fluctuation of core diameter into account.

SELECTION OF CITATIONS
SEARCH DETAIL
...