Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 7(4): 1344-1360, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33750112

ABSTRACT

Human pluripotent stem cells harbor an unlimited capacity to generate therapeutically relevant cells for applications in regenerative medicine. However, to utilize these cells in the clinic, scalable culture systems that activate defined receptors and signaling pathways to sustain stem cell self-renewal are required; and synthetic materials offer considerable promise to meet these needs. De novo development of materials that target novel pathways has been stymied by a limited understanding of critical receptor interactions maintaining pluripotency. Here, we identify peptide agonists for the human pluripotent stem cell (hPSC) laminin receptor and pluripotency regulator, α6-integrin, through unbiased, library-based panning strategies. Biophysical characterization of adhesion suggests that identified peptides bind hPSCs through α6-integrin with sub-µM dissociation constants similar to laminin. By harnessing a high-throughput microculture platform, we developed predictive guidelines for presenting these integrin-targeting peptides alongside canonical binding motifs at optimal stoichiometries to generate nascent culture surfaces. Finally, when presented as self-assembled monolayers, predicted peptide combinations supported hPSC expansion, highlighting how unbiased screens can accelerate the discovery of targeted biomaterials.


Subject(s)
Pluripotent Stem Cells , Cell Proliferation , Cell Self Renewal , Humans , Laminin , Peptides
2.
Nanoscale ; 9(43): 16596-16601, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29071324

ABSTRACT

Fluorescent carbon dots have received considerable attention as a result of their accessibility and potential applications. Although several prior studies have demonstrated that nearly any organic compound can be converted into carbon dots by chemical carbonization processes, mechanisms explaining the formation of carbon dots still remain unclear. Herein, we propose a seed-growth mechanism of carbon dot formation facilitated by ferulic acid, a widespread and naturally occurring phenolic compound in the seeds of Ocimum basilicum (basil). Ferulic acid triggers the local condensation of polysaccharide chains and forms catalytic core regions resulting in nanoscale carbonization. Our study indicates that carbon dots generated from natural sources might share the similar mechanism of phenolic compound mediated nanoscale condensation followed by core carbonization.

3.
Biomimetics (Basel) ; 2(3)2017 Sep.
Article in English | MEDLINE | ID: mdl-29360110

ABSTRACT

As synthetic analogs of the natural pigment melanin, polydopamine nanoparticles (NPs) are under active investigation as non-toxic anticancer photothermal agents and as free radical scavenging therapeutics. By analogy to the widely adopted polydopamine coatings, polydopamine NPs offer the potential for facile aqueous synthesis and incorporation of (bio)functional groups under mild temperature and pH conditions. However, clear procedures for the convenient and reproducible control of critical NP properties such as particle diameter, surface charge, and loading with functional molecules have yet to be established. In this work, we have synthesized polydopamine-based melanin-mimetic nanoparticles (MMNPs) with finely controlled diameters spanning ≈25 to 120 nm and report on the pH-dependence of zeta potential, methodologies for PEGylation, and the incorporation of fluorescent organic molecules. A comprehensive suite of complementary techniques, including dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), X-ray photoelectron spectroscopy (XPS), zeta-potential, ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy, and confocal microscopy, was used to characterize the MMNPs and their properties. Our PEGylated MMNPs are highly stable in both phosphate-buffered saline (PBS) and in cell culture media and exhibit no cytotoxicity up to at least 100 µg mL-1 concentrations. We also show that a post-functionalization methodology for fluorophore loading is especially suitable for producing MMNPs with stable fluorescence and significantly narrower emission profiles than previous reports, suggesting they will be useful for multimodal cell imaging. Our results pave the way towards biomedical imaging and possibly drug delivery applications, as well as fundamental studies of MMNP size and surface chemistry dependent cellular interactions.

4.
Macromol Rapid Commun ; 35(16): 1402-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24943242

ABSTRACT

Thin, phenylboronic acid-containing polymer coatings are potentially attractive sensory layers for a range of glucose monitoring systems. This contribution presents the synthesis and properties of glucose-sensitive polymer brushes obtained via surface RAFT polymerization of 3-methacrylamido phenylboronic acid (MAPBA). This synthetic strategy is attractive since it allows the controlled growth of PMAPBA brushes with film thicknesses of up to 20 nm via direct polymerization of MAPBA without the need for additional post-polymerization modification or deprotection steps. QCM-D sensor chips modified with a PMAPBA layer respond with a linear change in the shift of the fundamental resonance frequency over a range of physiologically relevant glucose concentrations and are insensitive toward the presence of fructose, thus validating the potential of these polymer brush films as glucose sensory thin coatings.


Subject(s)
Biosensing Techniques , Glucose/analysis , Polymers/chemistry , Quartz Crystal Microbalance Techniques , Boronic Acids/chemistry , Hydrogen-Ion Concentration , Methacrylates/chemistry , Polymerization , Surface Properties
5.
Langmuir ; 29(24): 7325-33, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23391159

ABSTRACT

In this Article, we studied the surface immobilization of five organic-acid-modified atom-transfer radical polymerization (ATRP) initiators based on salicylic acid, catechol, phthalic acid, and m- and p-benzoic acid on alumina, and we also investigated the growth of hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(poly(ethylene glycol)methycrylate) (PPEGMA6) brushes from the resulting initiator-modified substrates. Whereas the surface immobilization of phthalic acid- and benzoic acid-based initiators results in only very thin brushes or no brush growth at all, SI-ATRP of HEMA and PEGMA6 from alumina surfaces modified with salicylate or catechol generates brushes with thicknesses comparable to those obtained using organosilane-based initiators. Most interestingly, the surface immobilization of the catechol- and salicylate based-initiators was found to be pH-dependent, which allowed facile variation of the ATRP initiator surface concentration and, concomitantly, the polymer brush grafting density by adjusting the pH of the aqueous solution that was used to immobilize the initiator. This is in contrast to organosilane-based initiators, where the variation of the grafting density is usually accomplished using mixtures of the ATRP initiator and an ATRP inactive "dummy". Another difference between the organosilane-based initiators and the organic acid analogues is the stability of hydrophilic brushes grown from alumina. After a certain threshold thickness was exceeded, organosilane-tethered PPEGMA6 brushes were observed to detach from the substrate, in contrast to brushes grown from catechol or salicylate initiators, which did not show signs of degradation. Finally, as a first proof-of-concept, the salicylate-based initiator was used to develop an all-aqueous protocol for the modification of alumina membranes with hydrophilic PHEMA and succinic anhydride post-modified polymer brushes. The water permeation properties of these hybrid membranes can be controlled by adjusting the brush thickness in the case of the neutral PHEMA brush coating or can be pH-gated after post-polymerization modification to introduce carboxylic acid groups.


Subject(s)
Aluminum Oxide/chemistry , Hydrogen-Ion Concentration , Membranes, Artificial , Polymers/chemistry , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...