Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (184)2022 06 02.
Article in English | MEDLINE | ID: mdl-35723474

ABSTRACT

In primary osteoarthritis (OA), normal 'wear and tear' associated with aging inhibits the ability of cartilage to sustain its load-bearing and lubrication functions, fostering a deleterious physical environment. The frictional interactions of articular cartilage and synovium may influence joint homeostasis through tissue level wear and cellular mechanotransduction. To study these mechanical and mechanobiological processes, a device capable of replicating the motion of the joint is described. The friction testing device controls the delivery of reciprocal translating motion and normal load to two contacting biological counterfaces. This study adopts a synovium-on-cartilage configuration, and friction coefficient measurements are presented for tests performed in a phosphate-buffered saline (PBS) or synovial fluid (SF) bath. The testing was performed for a range of contact stresses, highlighting the lubricating properties of SF under high loads. This friction testing device can be used as a biomimetic bioreactor for studying the physical regulation of living joint tissues in response to applied physiologic loading associated with diarthrodial joint articulation.


Subject(s)
Cartilage, Articular , Mechanotransduction, Cellular , Biomechanical Phenomena , Biophysics , Bioreactors , Cartilage, Articular/physiology , Friction , Lubrication , Stress, Mechanical , Synovial Fluid
2.
J Biomech ; 107: 109852, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32517855

ABSTRACT

This study investigated wear damage of immature bovine articular cartilage using reciprocal sliding of tibial cartilage strips against glass or cartilage. Experiments were conducted in physiological buffered saline (PBS) or mature bovine synovial fluid (SF). A total of 63 samples were tested, of which 47 exhibited wear damage due to delamination of the cartilage surface initiated in the middle zone, with no evidence of abrasive wear. There was no difference between the friction coefficient of damaged and undamaged samples, showing that delamination wear occurs even when friction remains low under a migrating contact area configuration. No difference was observed in the onset of damage or in the friction coefficient between samples tested in PBS or SF. The onset of damage occurred earlier when testing cartilage against glass versus cartilage against cartilage, supporting the hypothesis that delamination occurs due to fatigue failure of the collagen in the middle zone, since stiffer glass produces higher strains and tensile stresses under comparable loads. The findings of this study are novel because they establish that delamination of the articular surface, starting in the middle zone, may represent a primary mechanism of failure. Based on preliminary data, it is reasonable to hypothesize that delamination wear via subsurface fatigue failure is similarly the primary mechanism of human cartilage wear under normal loading conditions, albeit requiring far more cycles of loading than in immature bovine cartilage.


Subject(s)
Cartilage, Articular , Animals , Cattle , Friction , Humans , Stress, Mechanical , Synovial Fluid , Tibia
SELECTION OF CITATIONS
SEARCH DETAIL
...