Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Omega ; 7(17): 15174-15185, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35572752

ABSTRACT

Despite various strategies to address sticking failure in stainless steels (STSs), difficulties in understanding its fundamental mechanisms hinder precise solutions during STS fabrication. This study investigated the effect of chromium (Cr) content on the microstructures and failure modes of oxide scales under a tensile load, simulating the hot-rolling process. The dynamic, real-time behavior of crack initiation, propagation, and interfacial delamination in the oxide scales under tension was analyzed using an in situ scanning electron microscopy (SEM) tensile test. With a high Cr content, iron (Fe) oxide and chromium(III) oxide (Cr2O3) form a layered structure, which is delaminated along the interfaces between the thin Cr2O3 layer and the bulk after perpendicular cracking. The saturated crack densities obtained from in situ SEM provide interfacial strength, while the elastic modulus and hardness obtained from nanoindentation provide vertical fracture strength. In combination with an ex situ elemental image analysis, the in situ SEM results reveal three different failure modes of the four different STSs. The results confirm that sticking failure is more likely to occur as the Cr content increases.

2.
Nature ; 603(7902): 631-636, 2022 03.
Article in English | MEDLINE | ID: mdl-35322249

ABSTRACT

Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases.

3.
Materials (Basel) ; 14(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34500918

ABSTRACT

Titanium iron (TiFe) alloy is a room-temperature hydrogen-storage material, and it absorbs hydrogen via a two-step process to form TiFeH and then TiFeH2. The effect of V addition in TiFe alloy was recently elucidated. The V substitution for Ti sublattice lowers P2/P1 ratio, where P1 and P2 are the equilibrium plateau pressure for TiFe/TiFeH and TiFeH/TiFeH2, respectively, and thus restricts the two-step hydrogenation within a narrow pressure range. The focus of the present investigation was to optimize the V content such that maximum usable storage capacity can be achieved for the target pressure range: 1 MPa for absorption and 0.1 MPa for desorption. The effect of V substitution at selective Ti or Fe sublattices was closely analyzed, and the alloy composition Ti46Fe47.5V6.5 displayed the best performance with ca. 1.5 wt.% of usable capacity within the target pressure range. At the same time, another issue in TiFe-based alloys, which is a difficulty in activation at room temperature, was solved by Ce addition. It was shown that 3 wt.% Ce dispersion in TiFe alloy imparted to it easy room-temperature (RT) activation properties.

4.
Sci Rep ; 10(1): 13699, 2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32792596

ABSTRACT

Light element identification is necessary in materials research to obtain detailed insight into various material properties. However, reported techniques, such as scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectroscopy (EDS) have inadequate detection limits, which impairs identification. In this study, we achieved light element identification with nanoscale spatial resolution in a multi-component metal alloy through unsupervised machine learning algorithms of singular value decomposition (SVD) and independent component analysis (ICA). Improvement of the signal-to-noise ratio (SNR) in the STEM-EDS spectrum images was achieved by combining SVD and ICA, leading to the identification of a nanoscale N-depleted region that was not observed in as-measured STEM-EDS. Additionally, the formation of the nanoscale N-depleted region was validated using STEM-electron energy loss spectroscopy and multicomponent diffusional transformation simulation. The enhancement of SNR in STEM-EDS spectrum images by machine learning algorithms can provide an efficient, economical chemical analysis method to identify light elements at the nanoscale.

5.
Sci Rep ; 8(1): 12986, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30154498

ABSTRACT

The ultra-small angle neutron scattering (USANS) measures the microscale structure of heterogeneity and the scattering from rough surfaces with small scattering volumes can be neglected. But this is not true in amorphous alloys. The small angle scattering from such surfaces is not negligible, regardless of scattering volume. However, we demonstrate that the unwanted rough surfaces can be utilized to determine the homogeneity and mass density of amorphous metallic glasses using the USANS and surface neutron contrast matching technique. The power law scattering of the homogeneous Cu50Zr50 amorphous alloy disappeared under the surface contrast-matched environment, a mixture of hydrogenated/deuterated ethanol having low surface tension against the metallic alloys, indicating that the scattering originated not from its internal structure but from the rough surface. This confirms the structural homogeneity not only at the atomic level but also on a larger scale of micrometer. On the other hand, the crystallized Cu50Zr50 alloy showed strong power-law scattering under the matching environment due to the structural heterogeneity inside the alloy. This technique can apply to the bulk samples when the transmission is high enough not causing multiple scattering that is easily detected with USANS and when the surface roughness is dominant source of scattering.

6.
Nano Lett ; 18(2): 1323-1330, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29361232

ABSTRACT

In the present study, we found that α-alumina hollow nanoshell structure can exhibit an ultrahigh fracture strength even though it contains a significant number of nanopores. By systematically performing in situ mechanical testing and finite element simulations, we could measure that the fracture strength of an α-alumina hollow nanoshell structure is about four times higher than that of the conventional bulk size α-alumina. The high fracture strength of the α-alumina hollow nanoshell structure can be explained in terms of conventional fracture mechanics, in that the position and size of the nanopores are the most critical factors determining the fracture strength, even at the nanoscales. More importantly, by deriving a fundamental understanding, we would be able to provide guidelines for the design of reliable ceramic nanostructures for advanced GaN light-emitting diodes (LEDs). To that end, we demonstrated how our ultrastrong α-alumina hollow nanoshell structures could be successfully incorporated into GaN LEDs, thereby greatly improving the luminous efficiency and output power of the LEDs by 2.2 times higher than that of conventional GaN LEDs.

7.
Sci Rep ; 4: 6500, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25265897

ABSTRACT

The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties.

8.
Microsc Microanal ; 19 Suppl 5: 149-51, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23920195

ABSTRACT

The microstructural analysis of the dehydrogenation products of the Ca(BH4)2-MgH2 composite was performed using transmission electron microscopy. It was found that nanocrystalline CaB6 crystallites formed as a dehydrogenation product throughout the areas where the signals of Ca and Mg were simultaneously detected, in addition to relatively coarse Mg crystallites. The uniform distribution of the nanocrystalline CaB6 crystallites appears to play a key role in the rehydrogenation of the dehydrogenation products, which implies that microstructure is a crucial factor determining the reversibility of reactive hydride composites.

9.
Proc Natl Acad Sci U S A ; 105(51): 20136-40, 2008 Dec 23.
Article in English | MEDLINE | ID: mdl-19074287

ABSTRACT

The mechanical properties of bulk metallic glasses (BMGs) and their composites have been under intense investigation for many years, owing to their unique combination of high strength and elastic limit. However, because of their highly localized deformation mechanism, BMGs are typically considered to be brittle materials and are not suitable for structural applications. Recently, highly-toughened BMG composites have been created in a Zr-Ti-based system with mechanical properties comparable with high-performance crystalline alloys. In this work, we present a series of low-density, Ti-based BMG composites with combinations of high strength, tensile ductility, and excellent fracture toughness.


Subject(s)
Glass/chemistry , Titanium , Mechanics , Tensile Strength
10.
Nature ; 451(7182): 1085-9, 2008 Feb 28.
Article in English | MEDLINE | ID: mdl-18305540

ABSTRACT

The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service. Highly processable bulk metallic glasses (BMGs) are a new class of engineering materials and have attracted significant technological interest. Although many BMGs exhibit high strength and show substantial fracture toughness, they lack ductility and fail in an apparently brittle manner in unconstrained loading geometries. For instance, some BMGs exhibit significant plastic deformation in compression or bending tests, but all exhibit negligible plasticity (<0.5% strain) in uniaxial tension. To overcome brittle failure in tension, BMG-matrix composites have been introduced. The inhomogeneous microstructure with isolated dendrites in a BMG matrix stabilizes the glass against the catastrophic failure associated with unlimited extension of a shear band and results in enhanced global plasticity and more graceful failure. Tensile strengths of approximately 1 GPa, tensile ductility of approximately 2-3 per cent, and an enhanced mode I fracture toughness of K(1C) approximately 40 MPa m(1/2) were reported. Building on this approach, we have developed 'designed composites' by matching fundamental mechanical and microstructural length scales. Here, we report titanium-zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2-1.5 GPa, K(1C) up to approximately 170 MPa m(1/2), and fracture energies for crack propagation as high as G(1C) approximately 340 kJ m(-2). The K(1C) and G(1C) values equal or surpass those achievable in the toughest titanium or steel alloys, placing BMG composites among the toughest known materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...