Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33941674

ABSTRACT

Tissue-on-chip systems represent promising platforms for monitoring and controlling tissue functions in vitro for various purposes in biomedical research. The two-dimensional (2D) layouts of these constructs constrain the types of interactions that can be studied and limit their relevance to three-dimensional (3D) tissues. The development of 3D electronic scaffolds and microphysiological devices with geometries and functions tailored to realistic 3D tissues has the potential to create important possibilities in advanced sensing and control. This study presents classes of compliant 3D frameworks that incorporate microscale strain sensors for high-sensitivity measurements of contractile forces of engineered optogenetic muscle tissue rings, supported by quantitative simulations. Compared with traditional approaches based on optical microscopy, these 3D mechanical frameworks and sensing systems can measure not only motions but also contractile forces with high accuracy and high temporal resolution. Results of active tension force measurements of engineered muscle rings under different stimulation conditions in long-term monitoring settings for over 5 wk and in response to various chemical and drug doses demonstrate the utility of such platforms in sensing and modulation of muscle and other tissues. Possibilities for applications range from drug screening and disease modeling to biohybrid robotic engineering.


Subject(s)
Cell Culture Techniques, Three Dimensional/methods , Imaging, Three-Dimensional/methods , Muscles/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Acetylcholine/pharmacology , Actinin/metabolism , Animals , Caffeine/pharmacology , Cell Culture Techniques, Three Dimensional/instrumentation , Cell Differentiation , Cell Line , Dantrolene/pharmacology , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Myosins/metabolism , Tissue Engineering/instrumentation , Vasodilator Agents/pharmacology
2.
Adv Healthc Mater ; 9(4): e1901137, 2020 02.
Article in English | MEDLINE | ID: mdl-31944612

ABSTRACT

Integration of conductive electrodes with 3D tissue models can have great potential for applications in bioelectronics, drug screening, and implantable devices. As conventional electrodes cannot be easily integrated on 3D, polymeric, and biocompatible substrates, alternatives are highly desirable. Graphene offers significant advantages over conventional electrodes due to its mechanical flexibility and robustness, biocompatibility, and electrical properties. However, the transfer of chemical vapor deposition graphene onto millimeter scale 3D structures is challenging using conventional wet graphene transfer methods with a rigid poly (methyl methacrylate) (PMMA) supportive layer. Here, a biocompatible 3D graphene transfer method onto 3D printed structure using a soft poly ethylene glycol diacrylate (PEGDA) supportive layer to integrate the graphene layer with a 3D engineered ring of skeletal muscle tissue is reported. The use of softer PEGDA supportive layer, with a 105 times lower Young's modulus compared to PMMA, results in conformal integration of the graphene with 3D printed pillars and allows electrical stimulation and actuation of the muscle ring with various applied voltages and frequencies. The graphene integration method can be applied to many 3D tissue models and be used as a platform for electrical interfaces to 3D biological tissue system.


Subject(s)
Graphite , Electric Conductivity , Electrodes , Muscle, Skeletal , Polymers
3.
Bioorg Med Chem Lett ; 25(2): 367-71, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25466710

ABSTRACT

A rational fluorine scan based on co-crystal structures was explored to increase the potency of a series of selective BTK inhibitors. While fluorine substitution on a saturated bicyclic ring system yields no apparent benefit, the same operation on an unsaturated bicyclic ring can increase HWB activity by up to 40-fold. Comparison of co-crystal structures of parent molecules and fluorinated counterparts revealed the importance of placing fluorine at the optimal position to achieve favorable interactions with protein side chains.


Subject(s)
Fluorine/chemistry , Fluorine/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Agammaglobulinaemia Tyrosine Kinase , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Structure , Protein Conformation , Structure-Activity Relationship
4.
J Med Chem ; 58(1): 512-6, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-24712864

ABSTRACT

Structure-based drug design was used to guide the optimization of a series of selective BTK inhibitors as potential treatments for Rheumatoid arthritis. Highlights include the introduction of a benzyl alcohol group and a fluorine substitution, each of which resulted in over 10-fold increase in activity. Concurrent optimization of drug-like properties led to compound 1 (RN486) ( J. Pharmacol. Exp. Ther. 2012 , 341 , 90 ), which was selected for advanced preclinical characterization based on its favorable properties.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Isoquinolines/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Crystallography, X-Ray , Drug Design , Humans , Isoquinolines/chemistry , Isoquinolines/metabolism , Models, Chemical , Models, Molecular , Molecular Structure , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism
5.
Org Lett ; 12(21): 4712-5, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20919723

ABSTRACT

An expedient enantioselective synthesis of the Δ(4)-oxocene cores present in (+)-laurencin and (+)-prelaureatin was accomplished in eight steps via a novel one-pot regio- and stereoselective ring cyclization-fragmentation-expansion cascade from the tetrahydrofuran precursors which were prepared by stereocontrolled cyclization from vinylsilanes. This process is highlighted by an intramolecular oxo-carbenoid insertion and a ß-silyl fragmentation sequence.


Subject(s)
Oxocins/chemical synthesis , Furans/chemical synthesis , Molecular Structure , Stereoisomerism
6.
ChemMedChem ; 4(1): 88-99, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19006142

ABSTRACT

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are part of the preferred treatment regimens for individuals infected with HIV. These NNRTI-based regimens are efficacious, but the most popular NNRTIs have a low genetic barrier to resistance and have been associated with adverse events. There is therefore still a need for efficacious antiviral medicines that facilitate patient adherence and allow durable suppression of viral replication. As part of an extensive program targeted toward the discovery of NNRTIs that have favorable pharmacokinetic properties, good potency against NNRTI-resistant viruses, and a high genetic barrier to drug resistance, we focused on the optimization of a series of diaryl ether NNRTIs. In the course of this effort, we employed molecular modeling to design a new set of NNRTIs that that are active against wild-type HIV and key NNRTI-resistant mutant viruses. The structure-activity relationships observed in this series of compounds provide insight into the structural features required for NNRTIs that inhibit the replication of a wide range of mutant viruses. Selected compounds have promising pharmacokinetic profiles.


Subject(s)
Anti-HIV Agents/chemistry , HIV Reverse Transcriptase/chemistry , Phenyl Ethers/chemistry , Phenyl Ethers/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Animals , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/pharmacology , Computer Simulation , Dogs , Drug Design , Drug Resistance, Viral/genetics , HIV/genetics , HIV Reverse Transcriptase/antagonists & inhibitors , Inhibitory Concentration 50 , Models, Molecular , Mutation , Phenyl Ethers/pharmacokinetics , Rats , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship
7.
J Med Chem ; 51(23): 7449-58, 2008 Dec 11.
Article in English | MEDLINE | ID: mdl-19007201

ABSTRACT

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of HIV. These regimens are extremely effective in suppressing virus replication. Structure-based optimization of diaryl ether inhibitors led to the discovery of a new series of pyrazolo[3,4-c]pyridazine NNRTIs that bind the reverse transcriptase enzyme of human immunodeficiency virus-1 (HIV-RT) in an expanded volume relative to most other inhibitors in this class.The binding mode maintains the beta13 and beta14 strands bearing Pro236 in a position similar to that in the unliganded reverse transcriptase structure, and the distribution of interactions creates the opportunity for substantial resilience to single point mutations. Several pyrazolopyridazine NNRTIs were found to be highly effective against wild-type and NNRTI-resistant viral strains in cell culture.


Subject(s)
Drug Design , HIV Reverse Transcriptase/antagonists & inhibitors , Pyrazoles/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Animals , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Binding Sites , Cell Line, Transformed , Crystallography, X-Ray , Dogs , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Haplorhini , Humans , Hydrogen Bonding , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Rats , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , Stereoisomerism , Structure-Activity Relationship
8.
J Org Chem ; 73(21): 8452-7, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-18811201

ABSTRACT

The synthesis of didemniserinolipid B utilizing a ketalization/ring-closing metathesis (K/RCM) strategy is described. In the course of this work, a novel 2-allyl-4-fluorophenyl auxiliary for relay ring-closing metathesis (RRCM) was developed, which increased the yield of the RCM. The resulting 6,8-dioxabicyclo[3.2.1]octene core was selectively functionalized by complimentary dihydroxylation and epoxidation routes to install the C10 axial alcohol. This bicyclic ketal core was further functionalized by etherification and an alkene cross metathesis with an unsaturated alpha-phenylselenyl ester en route to completing the total synthesis.


Subject(s)
Bridged Bicyclo Compounds/chemical synthesis , Octanes/chemistry , Propylene Glycols/chemical synthesis , Alkenes , Cyclization
9.
Bioorg Med Chem Lett ; 18(15): 4348-51, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18625554

ABSTRACT

Novel non-nucleoside inhibitors of HIV-RT that contain pyridazinone isosteres were prepared, and a series of triazolinones were found to be potent inhibitors of HIV replication. These compounds were active against several NNRTI-resistant virus strains. Pharmacokinetic studies indicated that inhibitor 7e has good bioavailability in rats. Several fragments of inhibitor 7c were prepared, and the binding of these compounds to HIV-RT was analyzed by surface plasmon resonance spectroscopy.


Subject(s)
Anti-HIV Agents , Pyridazines , Reverse Transcriptase Inhibitors , Triazoles , Animals , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/pharmacology , Combinatorial Chemistry Techniques , Drug Resistance, Viral/drug effects , Molecular Structure , Pyridazines/chemical synthesis , Pyridazines/chemistry , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Rats , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship , Surface Plasmon Resonance , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacokinetics , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...