Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 9(39): 22205-22210, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-35519454

ABSTRACT

Owing to their extremely high surface-to-volume ratio, carbon nanotubes (CNTs) are excellent adsorbents for the removal of organic pollutants. However, retrieval or collection of the CNTs after adsorption in existing approaches, which utilize CNTs dispersed in a solution of pollutants, is often more challenging than the removal of pollutants. In this study, we address this challenge by packaging vertically aligned CNTs into a PTFE heat-shrink tubing. Insertion of CNTs into the tubing and subsequent thermal shrinkage densified the CNTs radially by 35% and also reduced wrinkles in the nanotubes. The CNT-based adsorption tube with a circular cross-section enabled both easy functionalization of CNTs and facile connection to a source of polluted water, which we demonstrated for the removal of phenolic compounds. We purified and carboxylated CNTs, by flowing a solution of nitric acid through the tubing, and obtained adsorption capacities of 115, 124, and 81.2 mg g-1 for 0.5 g L-1 of phenol, m-cresol, 2-chlorophenol, respectively. We attribute the high adsorption capacity of our platform to efficient adsorbate-CNT interaction within the narrow interstitial channels between the aligned nanotubes. The CNT-based adsorption tubes are highly promising for the simple and efficient removal of phenolic and other types of organic pollutants.

2.
Anal Sci ; 33(3): 403-407, 2017.
Article in English | MEDLINE | ID: mdl-28302987

ABSTRACT

A certified reference material (CRM), NMIJ CRM 7203-a, was developed for the elemental analysis of tap water. At least two independent analytical methods were applied to characterize the certified value of each element. The elements certified in the present CRM were as follows: Al, As, B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, and Zn. The certified value for each element was given as the (property value ± expanded uncertainty), with a coverage factor of 2 for the expanded uncertainty. The expanded uncertainties were estimated while considering the contribution of the analytical methods, the method-to-method variance, the sample homogeneity, the long-term stability, and the concentrations of the standard solutions for calibration. The concentration of Hg (0.39 µg kg-1) was given as the information value, since loss of Hg was observed when the sample was stored at room temperature and exposed to light. The certified values of selected elements were confirmed by a co-analysis carried out independently by the NMIJ (Japan) and the KRISS (Korea).


Subject(s)
Drinking Water/analysis , Trace Elements/analysis , Drinking Water/standards , Japan , Mass Spectrometry/standards , Reference Standards , Republic of Korea , Trace Elements/standards
3.
Talanta ; 78(1): 321-5, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19174246

ABSTRACT

Reliable determination of arsine (AsH(3)) in gases is of great importance due to stringent regulations associated with health, safety and environmental issues. It is, however, challenging for an analyst to determine trace airborne arsine concentrations without specifically designed collection procedures using adsorption, desorption, dissolution or impinging techniques. To circumvent such technical barrier, we have newly developed a direct analytical method, characterized by introduction of an arsine gas sample into stable plasma stream, followed by gas-phase oxidation of arsine with molecular oxygen in a dynamic reaction cell (DRC) equipped within the inductively coupled plasma-mass spectrometry (ICP/MS) system, followed by subsequent detection of AsO(+) ion. This preliminary work used trace arsine concentrations (161 microg m(-3), 322 microg m(-3), and 645 microg m(-3)) gravimetrically prepared in N(2) balance. The proposed method was optimized for the important experimental parameters such as the flow rates of the reaction gas, the arsine sample, and the carrier gas. This method was then validated by demonstrating good figure-of-merits including the low limit of detection (0.10 microg m(-3)), good linearity (r(2)>0.9915), low measurement uncertainty (0.66%), and high speed of analysis (<6 min). The proposed method is expected to be potentially applicable to the determination of arsine in real workplace air after appropriate modifications are made.


Subject(s)
Air Pollutants, Occupational/analysis , Arsenicals/analysis , Mass Spectrometry/methods , Gases , Mass Spectrometry/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...