Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Nano Lett ; 24(4): 1223-1230, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38232153

ABSTRACT

Hybridizing a microwave mode with a quantum state requires precise frequency matching of a superconducting microwave resonator and the corresponding quantum object. However, fabrication always brings imperfections in geometry and material properties, causing deviations from the desired operating frequencies. An effective and universal strategy for their resonant coupling is to tune the frequency of a resonator, as quantum states like phonons are hardly tunable. Here, we demonstrate gate-tunable, titanium-nitride (TiN)-based superconducting resonators by implementing a nanowire inductor whose kinetic inductance is tuned via the gate-controlled supercurrent (GCS) effect. We investigate their responses for different gate biases and observe 4% (∼150 MHz) frequency tuning with decreasing internal quality factors. We also perform temperature-controlled experiments to support phonon-related mechanisms in the GCS effect and the resonance tuning. The GCS effect-based method proposed in this study provides an effective route for locally tunable resonators that can be employed in various hybrid quantum devices.

3.
Light Sci Appl ; 12(1): 44, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36792590

ABSTRACT

High-speed and high-resolution imaging of surface profiles is critical for the investigation of various structures and mechanical dynamics of micro- and nano-scale devices. In particular, recent emergence of various nonlinear, transient and complex mechanical dynamics, such as anharmonic vibrations in mechanical resonators, has necessitated real-time surface deformation imaging with higher axial and lateral resolutions, speed, and dynamic range. However, real-time capturing of fast and complex mechanical dynamics has been challenging, and direct time-domain imaging of displacements and mechanical motions has been a missing element in studying full-field structural and dynamic behaviours. Here, by exploiting the electro-optic sampling with a frequency comb, we demonstrate a line-scan time-of-flight (TOF) camera that can simultaneously measure the TOF changes of more than 1000 spatial coordinates with hundreds megapixels/s pixel-rate and sub-nanometre axial resolution over several millimetres field-of-view. This unique combination of performances enables fast and precise imaging of both complex structures and dynamics in three-dimensional devices and mechanical resonators.

4.
Nano Lett ; 22(13): 5459-5465, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35708318

ABSTRACT

Nanomechanical resonances coupled to microwave cavities can be excited, measured, and controlled simultaneously using electromechanical back-action phenomena. Examples of these effects include sideband cooling and amplification, which are commonly described through linear equations of motion governed by an effective optomechanical Hamiltonian. However, this linear approximation is invalid when the pump-induced cavity microwave field is large enough to trigger optomechanical nonlinearities, resulting in phenomena like frequency combs. Here, we employ a niobium-based superconducting electromechanical device to explore the generation of microwave frequency combs. We observe the formation of combs around a microwave resonant frequency (3.78 GHz) with 8-MHz frequency spacing, equal to the mechanical resonant frequency. We investigate their dynamics for different optomechanical parameters, including detuning, pump powers, and cavity decay rates. Our experimental results show excellent agreement with numerical modeling. These electromechanical frequency combs can be beneficial in nanomechanical sensing applications that require precise electrical tracking of mechanical resonant frequencies.

5.
Nano Lett ; 21(4): 1800-1806, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33555879

ABSTRACT

Nanoscale electromechanical coupling provides a unique route toward control of mechanical motions and microwave fields in superconducting cavity electromechanical devices. However, conventional devices composed of aluminum have presented severe constraints on their operating conditions due to the low superconducting critical temperature (1.2 K) and magnetic field (0.01 T) of aluminum. To enhance their potential in device applications, we fabricate a superconducting electromechanical device employing niobium and demonstrate a set of cavity electromechanical dynamics, including back-action cooling and amplification, and electromechanically induced reflection at 4.2 K and in strong magnetic fields up to 0.8 T. Niobium-based electromechanical transducers operating at this temperature could potentially be employed to realize compact, nonreciprocal microwave devices in place of conventional isolators and cryogenic amplifiers. Moreover, with their resilience to magnetic fields, niobium devices utilizing the electromechanical back-action effects could be used to study spin-phonon interactions for nanomechanical spin-sensing.

6.
Sensors (Basel) ; 20(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751685

ABSTRACT

This research presents a control structure for an omni-wheel mobile robot (OWMR). The control structure includes the path planning module and the motion control module. In order to secure the robustness and fast control performance required in the operating environment of OWMR, a bio-inspired control method, brain limbic system (BLS)-based control, was applied. Based on the derived OWMR kinematic model, a motion controller was designed. Additionally, an optimal path planning module is suggested by combining the advantages of A* algorithm and the fuzzy analytic hierarchy process (FAHP). In order to verify the performance of the proposed motion control strategy and path planning algorithm, numerical simulations were conducted. Through a point-to-point movement task, circular path tracking task, and randomly moving target tracking task, it was confirmed that the suggesting motion controller is superior to the existing controllers, such as PID. In addition, A*-FAHP was applied to the OWMR to verify the performance of the proposed path planning algorithm, and it was simulated based on the static warehouse environment, dynamic warehouse environment, and autonomous ballet parking scenarios. The simulation results demonstrated that the proposed algorithm generates the optimal path in a short time without collision with stop and moving obstacles.


Subject(s)
Algorithms , Motion , Robotics , Computer Simulation
7.
Nat Commun ; 10(1): 4522, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586072

ABSTRACT

Aharonov-Bohm conductance oscillations emerge as a result of gapless surface states in topological insulator nanowires. This quantum interference accompanies a change in the number of transverse one-dimensional modes in transport, and the density of states of such nanowires is also expected to show Aharonov-Bohm oscillations. Here, we demonstrate a novel characterization of topological phase in Bi2Se3 nanowire via nanomechanical resonance measurements. The nanowire is configured as an electromechanical resonator such that its mechanical vibration is associated with its quantum capacitance. In this way, the number of one-dimensional transverse modes is reflected in the resonant frequency, thereby revealing Aharonov-Bohm oscillations. Simultaneous measurements of DC conductance and mechanical resonant frequency shifts show the expected oscillations, and our model based on the gapless Dirac fermion with impurity scattering explains the observed quantum oscillations successfully. Our results suggest that the nanomechanical technique would be applicable to a variety of Dirac materials.

8.
Nanoscale ; 11(12): 5171-5179, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30843575

ABSTRACT

We report a ternary silver chalcogenide, Ag2Se0.5Te0.5, as a new topological material with improved quantum transport properties. Single-crystalline nanostructures of ternary silver chalcogenides Ag2SexTe1-x are synthesized with a tunable chemical composition via the chemical vapor transport method. Quantum transport studies reveal that Ag2Se0.5Te0.5 nanowires present topological surface states with higher electron mobility and longer mean free path compared to binary Ag-chalcogenides. First-principles calculations also indicate that Ag2Se0.5Te0.5 is a topological insulator, and the observed enhancement in transport properties could imply reduced bulk carrier contribution in the new ternary silver chalcogenide.

9.
Nat Commun ; 9(1): 5371, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30560877

ABSTRACT

Precise doping-profile engineering in van der Waals heterostructures is a key element to promote optimal device performance in various electrical and optical applications with two-dimensional layered materials. Here, we report tungsten diselenide- (WSe2) based pure vertical diodes with atomically defined p-, i- and n-channel regions. Externally modulated p- and n-doped layers are respectively formed on the bottom and the top facets of WSe2 single crystals by direct evaporations of high and low work-function metals platinum and gadolinium, thus forming atomically sharp p-i-n heterojunctions in the homogeneous WSe2 layers. As the number of layers increases, charge transport through the vertical WSe2 p-i-n heterojunctions is characterized by a series of quantum tunneling events; direct tunneling, Fowler-Nordheim tunneling, and Schottky emission tunneling. With optimally selected WSe2 thickness, our vertical heterojunctions show superb diode characteristics of an unprecedentedly high current density and low turn-on voltages while maintaining good current rectification.

10.
Nano Lett ; 10(10): 3990-4, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20843059

ABSTRACT

We demonstrate the parametric amplification and noise squeezing of nanomechanical motion utilizing dispersive coupling to a Cooper-pair box qubit. By modulating the qubit bias and resulting mechanical resonance shift, we achieve gain of 30 dB and noise squeezing of 4 dB. This qubit-mediated effect is 3000 times more effective than that resulting from the weak nonlinearity of capacitance to a nearby electrode. This technique may be used to prepare nanomechanical squeezed states.

SELECTION OF CITATIONS
SEARCH DETAIL
...