Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298635

ABSTRACT

2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) expression is upregulated in a variety of cancers and has been related to poor prognosis. However, despite this significance to cancer progression, the precise oncogenic mechanism of OGFOD1 is not understood. We demonstrated that OGFOD1 plays a role in enhancing the transcriptional activity of RNA polymerase II in breast cancer cells. OGFOD1 directly binds to the C-terminal domain of RNA polymerase II to alter phosphorylation status. The elimination of OGFOD1 resulted in decreased tumor development. Additionally, cell cycle-dependent kinase 7 and cell cycle-dependent kinase 9, critical enzymes for activating RNA polymerase II, phosphorylated serine 256 of OGFOD1, whereas a non-phosphorylated mutant OGFOD1 failed to enhance transcriptional activation and tumor growth. Consequently, OGFOD1 helps promote tumor growth by enhancing RNA polymerase II, whereas simultaneous phosphorylation of OGFOD1 by CDK enzymes is essential in stimulating RNA polymerase II-mediated transcription both in vitro and in vivo, and expression of target genes.

2.
FASEB J ; : fj201700837RRRR, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29894668

ABSTRACT

Unlike lower organisms, mammals have 2 C-terminal binding protein (Ctbp) isoforms, Ctbp1 and Ctbp2. Ctbp2 is revealed as a key factor involved in determining cell fate decisions by regulating the epigenetic state in active embryonic stem cell (ESC) genes. However, the molecular mechanism underlying how Ctbp1 and Ctbp2 have different roles remains elusive. Here we demonstrate that Ctbp isoform abundance is important for mouse embryonic ESCs (mESCs) to exit from pluripotency. Temporal expression patterns of Ctbp isoforms were quite different; Ctbp2 is more highly expressed in mESCs and decreases during differentiation, while Ctbp1 is constantly expressed at a lower level. Ctbp2 knockdown, but not Ctbp1 knockdown, in mESCs resulted in impaired exit from pluripotency. Interestingly, Ctbp1 and Ctbp2 overexpression in Ctbp2-knockdown mESCs leads to exiting from pluripotency in a manner similar to that of wild-type mESCs. Quantification of Ctbp1 and Ctbp2 revealed that differentiation ability correlates with abundance of Ctbp isoform in undifferentiated mESCs, suggesting that a sufficient amount of Ctbp isoform is a prerequisite for exiting from pluripotency. The results support the contention that 2 redundant Ctbp isoforms regulate elaborate differentiation via temporally distinctive regulatory patterns in mESCs.-Suh, M. Y., Kim, T. W., Lee, H.-T., Shin, J., Kim, J.-H., Jang, H., Kim, H. J., Kim, S.-T., Cho, E.-J., Youn, H.-D. Abundance of C-terminal binding protein isoform is a prerequisite for exit from pluripotency in mouse embryonic stem cells.

3.
Nucleic Acids Res ; 46(13): 6544-6560, 2018 07 27.
Article in English | MEDLINE | ID: mdl-29901724

ABSTRACT

Cyclin-dependent kinase 1 (Cdk1) is indispensable for embryonic stem cell (ESC) maintenance and embryo development. Even though some reports have described a connection between Cdk1 and Oct4, there is no evidence that Cdk1 activity is directly linked to the ESC pluripotency transcription program. We recently reported that Aurkb/PP1-mediated Oct4 resetting is important to cell cycle maintenance and pluripotency in mouse ESCs (mESCs). In this study, we show that Cdk1 is an upstream regulator of the Oct4 phosphorylation state during cell cycle progression, and it coordinates the chromatin associated state of Oct4 for pluripotency-related gene expression within the cell cycle. Upon entry into mitosis, Aurkb in the chromosome passenger complex becomes fully activated and PP1 activity is inhibited downstream of Cdk1 activation, leading to sustaining Oct4(S229) phosphorylation and dissociation of Oct4 from chromatin during the mitotic phase. Cdk1 inhibition at the mitotic phase abnormally results in Oct4 dephosphorylation, chromosome decondensation and chromatin association of Oct4, even in replicated chromosome. Our study results suggest a molecular mechanism by which Cdk1 directly links the cell cycle to the pluripotency transcription program in mESCs.


Subject(s)
CDC2 Protein Kinase/metabolism , Cell Cycle/genetics , Chromatin/metabolism , Embryonic Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , Transcription, Genetic , Animals , Aurora Kinase B/metabolism , CDC2 Protein Kinase/antagonists & inhibitors , Cell Division/genetics , Cells, Cultured , G2 Phase/genetics , Humans , Mice , Phosphorylation , Protein Phosphatase 1/metabolism
4.
Exp Mol Med ; 49(10): e385, 2017 10 13.
Article in English | MEDLINE | ID: mdl-29026198

ABSTRACT

The canonical Wnt pathway is critical for embryonic stem cell (ESC) pluripotency and aberrant control of ß-catenin leads to failure of exit from pluripotency and lineage commitments. Hence, maintaining the appropriate level of ß-catenin is important for the decision to commit to the appropriate lineage. However, how ß-catenin links to core transcription factors in ESCs remains elusive. C-terminal-binding protein (CtBP) in Drosophila is essential for Wnt-mediated target gene expression. In addition, Ctbp acts as an antagonist of ß-catenin/TCF activation in mammals. Recently, Ctbp2, a core Oct4-binding protein in ESCs, has been reported to play a key role in ESC pluripotency. However, the significance of the connection between Ctbp2 and ß-catenin with regard to ESC pluripotency remains elusive. Here, we demonstrate that C-terminal-binding protein 2 (Ctbp2) associates with major components of the ß-catenin destruction complex and limits the accessibility of ß-catenin to core transcription factors in undifferentiated ESCs. Ctbp2 knockdown leads to stabilization of ß-catenin, which then interacts with core pluripotency-maintaining factors that are occupied by Ctbp2, leading to incomplete exit from pluripotency. These findings suggest a suppressive function for Ctbp2 in reducing the protein level of ß-catenin, along with priming its position on core pluripotency genes to hinder ß-catenin deposition, which is central to commitment to the appropriate lineage.


Subject(s)
Cell Self Renewal/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , beta Catenin/metabolism , Alcohol Oxidoreductases , Animals , Binding Sites , Cell Line , Co-Repressor Proteins , Embryonic Stem Cells , Gene Expression , Gene Knockdown Techniques , Genes, Reporter , Mice , Models, Biological , Nucleotide Motifs , Protein Binding , Protein Stability , RNA, Small Interfering/genetics
5.
Elife ; 5: e10877, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26880562

ABSTRACT

Pluripotency transcription programs by core transcription factors (CTFs) might be reset during M/G1 transition to maintain the pluripotency of embryonic stem cells (ESCs). However, little is known about how CTFs are governed during cell cycle progression. Here, we demonstrate that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle genes in determining the identity of ESCs. Aurkb phosphorylates Oct4(S229) during G2/M phase, leading to the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Aurkb phosphor-mimetic and PP1 binding-deficient mutations in Oct4 alter the cell cycle, effect the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Our findings provide evidence that the cell cycle is linked directly to pluripotency programs in ESCs.


Subject(s)
Aurora Kinase B/metabolism , Cell Cycle , Embryonic Stem Cells/physiology , Octamer Transcription Factor-3/metabolism , Protein Phosphatase 1/metabolism , Animals , Mice , Phosphorylation , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...