Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotoxicology ; 103: 146-161, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885884

ABSTRACT

Developmental exposures to PCBs are implicated in the etiology of neurodevelopmental disorders (NDDs). This observation is concerning given the continued presence of PCBs in the human environment and the increasing incidence of NDDs. Previous studies reported that developmental exposure to legacy commercial PCB mixtures (Aroclors) or single PCB congeners found in Aroclors caused NDD-relevant behavioral phenotypes in animal models. However, the PCB congener profile in contemporary human samples is dissimilar to that of the legacy Aroclors, raising the question of whether human-relevant PCB mixtures similarly interfere with normal brain development. To address this question, we assessed the developmental neurotoxicity of the Fox River Mixture (FRM), which was designed to mimic the congener profile identified in fish from the PCB-contaminated Fox River that constitute a primary protein source in the diet of surrounding communities. Adult female C57BL/6 J mouse dams (8-10 weeks old) were exposed to vehicle (peanut oil) or FRM at 0.1, 1.0, or 6.0 mg/kg/d in their diet throughout gestation and lactation, and neurodevelopmental outcomes were assessed in their pups. Ultrasonic vocalizations (USVs) and measures of general development were quantified at postnatal day (P) 7, while performance in the spontaneous alternation task and the 3-chambered social approach/social novelty task was assessed on P35. Triiodothyronine (T3) and thyroxine (T4) were quantified in serum collected from the dams when pups were weaned and from pups on P28 and P35. Developmental exposure to FRM did not alter pup weight or body temperature on P7, but USVs were significantly decreased in litters exposed to FRM at 0.1 or 6.0 mg/kg/d in the maternal diet. FRM also impaired male and female pups' performance in the social novelty task. Compared to sex-matched vehicles, significantly decreased social novelty was observed in male and female pups in the 0.1 and 6.0 mg/kg/d dose groups. FRM did not alter performance in the spontaneous alternation or social approach tasks. FRM increased serum T3 levels but decreased serum T4 levels in P28 male pups in the 1.0 and 6.0 mg/kg/d dose groups. In P35 female pups and dams, serum T3 levels decreased in the 6.0 mg/kg/d dose group while T4 levels were not altered. Collectively, these findings suggest that FRM interferes with the development of social communication and social novelty, but not memory, supporting the hypothesis that contemporary PCB exposures pose a risk to the developing brain. FRM had sex, age, and dose-dependent effects on serum thyroid hormone levels that overlapped but did not perfectly align with the FRM effects on behavioral outcomes. These observations suggest that changes in thyroid hormone levels are not likely the major factor underlying the behavioral deficits observed in FRM-exposed animals.

2.
Drug Metab Dispos ; 50(10): 1396-1413, 2022 10.
Article in English | MEDLINE | ID: mdl-34857530

ABSTRACT

Perfluorinated carboxylic acids (PFCAs) are widespread environmental pollutants for which human exposure has been documented. PFCAs at high doses are known to regulate xenobiotic transporters partly through peroxisome proliferator-activated receptor alpha (PPARα) and constitutive androstane receptor (CAR) in rodent models. Less is known regarding how various PFCAs at a lower concentration modulate transporters for endogenous substrates, such as amino acids in human hepatocytes. Such studies are of particular importance because amino acids are involved in chemical detoxification, and their transport system may serve as a promising therapeutic target for structurally similar xenobiotics. The focus of this study was to further elucidate how PFCAs modulate transporters involved in intermediary metabolism and xenobiotic biotransformation. We tested the hepatic transcriptomic response of HepaRG cells exposed to 45 µM of perfluorooctanoic acid, perfluorononanoic acid, or perfluorodecanoic acid in triplicates for 24 hours (vehicle: 0.1% DMSO), as well as the prototypical ligands for PPARα (WY-14643, 45 µM) and CAR (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime [CITCO], 2 µM). PFCAs with increasing carbon chain lengths (C8-C10) regulated more liver genes, with amino acid metabolism and transport ranked among the top enriched pathways and PFDA ranked as the most potent PFCA tested. Genes encoding amino acid transporters, which are essential for protein synthesis, were novel inducible targets by all three PFCAs, suggesting a potentially protective mechanism to reduce further toxic insults. None of the transporter regulations appeared to be through PPARα or CAR but potential involvement of nuclear factor erythroid 2-related factor 2 is noted for all 3 PFCAs. In conclusion, PFCAs with increasing carbon chain lengths up-regulate amino acid transporters and modulate xenobiotic transporters to limit further toxic exposures in HepaRG cells. SIGNIFICANCE STATEMENT: Little is known regarding how various perfluorinated carboxylic acids modulate the transporters for endogenous substrates in human liver cells. Using HepaRG cells, this study is among the first to show that perfluorinated carboxylic acids with increasing carbon chain lengths upregulate amino acid transporters, which are essential for protein synthesis, and modulate xenobiotic transporters to limit further toxic exposures at concentrations lower than what was used in the literature.


Subject(s)
Carboxylic Acids , Environmental Pollutants , Amino Acid Transport Systems , Amino Acids , Carbon/metabolism , Carboxylic Acids/metabolism , Dimethyl Sulfoxide , Environmental Pollutants/toxicity , Humans , Oximes , PPAR alpha/genetics , PPAR alpha/metabolism , Thiazoles , Xenobiotics/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...