Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 928: 172054, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38569950

ABSTRACT

Nitrous oxide (N2O) emissions from different agricultural systems have been studied extensively to understand the mechanisms underlying their formation. While a number of long-term field experiments have focused on individual agricultural practices in relation to N2O emissions, studies on the combined effects of multiple practices are lacking. This study evaluated the effect of different tillage [no-till (NT) vs. conventional plough tillage (CT)] in combination with fertilisation [mineral (MIN), compost (ORG), and unfertilised control (CON)] on seasonal N2O emissions and the underlying N-cycling microbial community in one maize growing season. Rainfall events after fertilisation, which resulted in increased soil water content, were the main triggers of the observed N2O emission peaks. The highest cumulative emissions were measured in MIN fertilisation, followed by ORG and CON fertilisation. In the period after the first fertilisation CT resulted in higher cumulative emissions than NT, while no significant effect of tillage was observed cumulatively across the entire season. A higher genetic potential for N2O emissions was observed under NT than CT, as indicated by an increased (nirK + nirS)/(nosZI + nosZII) ratio. The mentioned ratio under NT decreased in the order CON > MIN > ORG, indicating a higher N2O consumption potential in the NT-ORG treatment, which was confirmed in terms of cumulative emissions. The AOB/16S ratio was strongly affected by fertilisation and was higher in the MIN than in the ORG and CON treatments, regardless of the tillage system. Multiple regression has revealed that this ratio is one of the most important variables explaining cumulative N2O emissions, possibly reflecting the role of bacterial ammonia oxidisers in minerally fertilised soil. Although the AOB/16S ratio aligned well with the measured N2O emissions in our experimental field, the higher genetic potential for denitrification expressed by the (nirK + nirS)/(nosZI + nosZII) ratio in NT than CT was not realized in the form of increased emissions. Our results suggest that organic fertilisation in combination with NT shows a promising combination for mitigating N2O emissions; however, addressing the yield gap is necessary before incorporating it in recommendations for farmers.

2.
Front Microbiol ; 11: 568, 2020.
Article in English | MEDLINE | ID: mdl-32318044

ABSTRACT

Agro-ecosystems experience huge losses of land every year due to soil erosion induced by poor agricultural practices such as intensive tillage. Erosion can be minimized by the presence of stable soil aggregates, the formation of which can be promoted by bacteria. Some of these microorganisms have the ability to produce exopolysaccharides and lipopolysaccharides that "glue" soil particles together. However, little is known about the influence of tillage intensity on the bacterial potential to produce these polysaccharides, even though more stable soil aggregates are usually observed under less intense tillage. As the effects of tillage intensity on soil aggregate stability may vary between sites, we hypothesized that the response of polysaccharide-producing bacteria to tillage intensity is also determined by site-specific conditions. To investigate this, we performed a high-throughput shotgun sequencing of DNA extracted from conventionally and reduced tilled soils from three tillage system field trials characterized by different soil parameters. While we confirmed that the impact of tillage intensity on soil aggregates is site-specific, we could connect improved aggregate stability with increased absolute abundance of genes involved in the production of exopolysaccharides and lipopolysaccharides. The potential to produce polysaccharides was generally promoted under reduced tillage due to the increased microbial biomass. We also found that the response of most potential producers of polysaccharides to tillage was site-specific, e.g., Oxalobacteraceae had higher potential to produce polysaccharides under reduced tillage at one site, and showed the opposite response at another site. However, the response of some potential producers of polysaccharides to tillage did not depend on site characteristics, but rather on their taxonomic affiliation, i.e., all members of Actinobacteria that responded to tillage intensity had higher potential for exopolysaccharide and lipopolysaccharide production specifically under reduced tillage. This could be especially crucial for aggregate stability, as polysaccharides produced by different taxa have different "gluing" efficiency. Overall, our data indicate that tillage intensity could affect aggregate stability by both influencing the absolute abundance of genes involved in the production of exopolysaccharides and lipopolysaccharides, as well as by inducing shifts in the community of potential polysaccharide producers. The effects of tillage intensity depend mostly on site-specific conditions.

3.
Sci Total Environ ; 627: 544-552, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426177

ABSTRACT

Glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) have frequently been detected in surface water and groundwaters. Since adequate glyphosate mineralization in soil may reduce its losses to environment, improved understanding of site specific factors underlying pesticide mineralization in soils is needed. The aim of this study was to investigate the relationship between soil properties and glyphosate mineralization. To establish a sound basis for resilient correlations, the study was conducted with a large number of 21 agricultural soils, differing in a variety of soil parameters, such as soil texture, soil organic matter content, pH, exchangeable ions etc. The mineralization experiments were carried out with 14C labelled glyphosate at a soil water tension of -15 kPa and at a soil density of 1.3 g cm-3 at 20 ±â€¯1 °C for an incubation period of 32 days. The results showed that the mineralization of glyphosate in different agricultural soils varied to a great extent, from 7 to 70% of the amount initially applied. Glyphosate mineralization started immediately after application, the highest mineralization rates were observed within the first 4 days in most of the 21 soils. Multiple regression analysis revealed exchangeable acidity (H+ and Al3+), exchangeable Ca2+ ions and ammonium lactate extractable K to be the key soil parameters governing glyphosate mineralization in the examined soils. A highly significant negative correlation between mineralized glyphosate and NaOH-extractable residues (NaOH-ER) in soils strongly suggests that NaOH-ER could be used as a simple and reliable parameter for evaluating the glyphosate mineralization capacity. The NaOH-ER were composed of glyphosate, unknown 14C-residues, and AMPA (12%-65%, 3%-34%, 0%-11% of applied 14C, respectively). Our results highlighted the influential role of soil exchangeable acidity, which should therefore be considered in pesticide risk assessments and management to limit efficiently the environmental transfers of glyphosate.

4.
Front Microbiol ; 5: 96, 2014.
Article in English | MEDLINE | ID: mdl-24659987

ABSTRACT

Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and might be a useful agent to stimulate bioremediation of hydrocarbons in contaminated soils.

5.
Microb Ecol ; 58(1): 1-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-18777188

ABSTRACT

Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavesinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 micromol CO2 m(-2) s(-1) yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the "red-like" type of cbbL genes could be detected. In contrast, the "green-like" type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of "red-like" cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of "red-like" cbbL genes changed depending on the CO(2) regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime.


Subject(s)
Bacteria/metabolism , Carbon Dioxide/metabolism , Soil Microbiology , Soil/analysis , Bacteria/genetics , DNA, Bacterial/analysis , Ecosystem , Genetic Variation , Phylogeny , Ribulose-Bisphosphate Carboxylase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...