Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 5(2): 519-526, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31994871

ABSTRACT

A new type of stripping voltammetry is introduced, in which the preconcentration step includes ion insertion into a solid phase followed by a quantification step in which the ion is expelled via linear sweep voltammetry. Specifically, sodium-ion concentrations in both aqueous solution and synthetic sweat are electrochemically determined using iron(III) phosphate-modified glassy carbon electrodes. The electrochemical method consists of a potentiostatic step, holding the potential of -0.5 V vs saturated calomel electrode (SCE) for 100 s, followed by linear sweep voltammetry. It is shown that a thermal and mechanical pretreatment at 800 °C and with a ball mill, respectively, improve the electrochemical response of the iron(III) phosphate toward Na+. The involved structural and morphological changes were assessed by thermogravimetric analysis, scanning electron microscopy, and powder X-ray diffraction. The sensor exhibits a good selectivity toward Li+ and K+ and shows a linear response between 0.025 and 0.2 M Na+. As a proof-of-principle, the sensor was used to determine the sodium level in synthetic sweat.


Subject(s)
Electrochemical Techniques/methods , Electrodes/standards , Ions/chemistry , Iron/chemistry , Phosphates/chemistry , Sodium/chemistry , Humans
2.
ACS Sens ; 4(9): 2497-2506, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31429259

ABSTRACT

We report an electrochemical sensor for the detection of lithium ions (Li+) in authentic human saliva at lithium manganese oxide (LiMn2O4)-modified glassy carbon electrodes (LMO-GCEs) and screen-printed electrodes (LMO-SPEs). The sensing strategy is based on an initial galvanostatic delithiation of LMO followed by linear stripping voltammetry (LSV) to detect the reinsertion of Li+ in the analyte. The process was investigated using powder X-ray diffraction and voltammetry. LSV measurements reveal a measurable lower limit of 50.0 µM in both LiClO4 aqueous solutions and synthetic saliva samples, demonstrating the applicability of the proposed analytical method down to low Li+ concentrations. Four different samples of authentic human saliva were then analyzed with the established sensing strategy using LMO-SPEs, showing good linearity over a concentration range up to 5.0 mM Li+ with high reproducibility (RSD < 7%) and applicability for routine monitoring purposes. The total time needed to analyze a sample is less than 3 min.


Subject(s)
Electrochemistry/instrumentation , Lithium/analysis , Manganese/chemistry , Oxides/chemistry , Saliva/chemistry , Carbon/chemistry , Electrodes , Humans , Limit of Detection , Lithium/chemistry
3.
Phys Chem Chem Phys ; 21(8): 4444-4451, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30734819

ABSTRACT

We report the key role of the capping agent in the detection of metal cations using tannic acid (TA) capped gold nanoparticles at both ensembles (using cyclic voltammetry) and with individual particles (using oxidative and reductive nanoimpacts). The results show that the capping agent complexes with Zn2+ and Hg2+ in a reversible and Langmuirian manner in both cases. The sensitivity of detection is determined by the amount of capping agent present on the nanoparticles with similar values seen for both oxidation and reduction reactions. The optimisation of the capping agent loading is therefore key to metal ion detection.

4.
Phys Chem Chem Phys ; 20(44): 28300-28307, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30398484

ABSTRACT

The electrochemical dissolution of citrate-capped gold nanoparticles (AuNPs) was studied in cyanide (CN-) containing solutions. It was found that the gold nanoparticles exhibited different dissolution behaviours as ensembles compared to the single particles. At the single particle level, a nearly complete oxidation of 60 nm AuNPs was achieved at concentrations greater than or equal to 35.0 mM CN- and at a potential of 1.0 V. Mechanistic insights and rate data are reported.

5.
Analyst ; 143(9): 2035-2041, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29645056

ABSTRACT

We report the electrochemical sensing of Hg2+ based on tannic acid capped gold nanoparticle (AuNP@TA) complexes. At optimal conditions using square wave voltammetry, the presented analytical method exhibits a "measurable lower limit" of 100.0 fM. This limit is considerably below the permissible level of 30.0 nM for inorganic mercury in drinking water, specified by the World Health Organization (WHO). The effect of potentially interfering ions, such as Zn2+ and Al3+, was studied and results indicate an excellent selectivity for Hg2+. The transfer of the proposed strategy onto AuNP@TA modified screen-printed electrodes demonstrates its applicability to routine monitoring of Hg2+ in tap water.

6.
Anal Chem ; 89(13): 7166-7173, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28581287

ABSTRACT

Ultratrace levels of Hg2+ have been quantified by undertaking linear sweep voltammetry with a silver nanoparticle-modified glassy carbon electrode (AgNP-GCE) in aqueous solutions containing Hg2+. This is achieved by monitoring the change in the silver stripping peak with Hg2+ concentration resulting from the galvanic displacement of silver by mercury: Ag(np) + 1/2Hg2+(aq) → Ag+(aq) + 1/2Hg(l). This facile and reproducible detection method exhibits an excellent linear dynamic range of 100.0 pM to 10.0 nM Hg2+ concentration with R2 = 0.982. The limit of detection (LoD) based on 3σ is 28 pM Hg2+, while the lowest detectable level for quantification purposes is 100.0 pM. This method is appropriate for routine environmental monitoring and drinking water quality assessment since the guideline value set by the US Environmental Protection Agency (EPA) for inorganic mercury in drinking water is 0.002 mg L-1 (10 nM).

SELECTION OF CITATIONS
SEARCH DETAIL
...