Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 13(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38929067

ABSTRACT

BACKGROUND: Our previous studies have shown that scorpion venom heat-resistant synthesized peptide (SVHRSP) induces a significant extension in lifespan and improvements in age-related physiological functions in worms. However, the mechanism underlying the potential anti-aging effects of SVHRSP in mammals remains elusive. METHODS: Following SVHRSP treatment in senescence-accelerated mouse resistant 1 (SAMR1) or senescence-accelerated mouse prone 8 (SAMP8) mice, behavioral tests were conducted and brain tissues were collected for morphological analysis, electrophysiology experiments, flow cytometry, and protein or gene expression. The human neuroblastoma cell line (SH-SY5Y) was subjected to H2O2 treatment in cell experiments, aiming to establish a cytotoxic model that mimics cellular senescence. This model was utilized to investigate the regulatory mechanisms underlying oxidative stress and neuroinflammation associated with age-related cognitive impairment mediated by SVHRSP. RESULTS: SVHRSP significantly ameliorated age-related cognitive decline, enhanced long-term potentiation, restored synaptic loss, and upregulated the expression of synaptic proteins, therefore indicating an improvement in synaptic plasticity. Moreover, SVHRSP demonstrated a decline in senescent markers, including SA-ß-gal enzyme activity, P16, P21, SIRT1, and cell cycle arrest. The underlying mechanisms involve an upregulation of antioxidant enzyme activity and a reduction in oxidative stress-induced damage. Furthermore, SVHRSP regulated the nucleoplasmic distribution of NRF2 through the SIRT1-P53 pathway. Further investigation indicated a reduction in the expression of proinflammatory factors in the brain after SVHRSP treatment. SVHRSP attenuated neuroinflammation by regulating the NF-κB nucleoplasmic distribution and inhibiting microglial and astrocytic activation through the SIRT1-NF-κB pathway. Additionally, SVHRSP significantly augmented Nissl body count while suppressing neuronal loss. CONCLUSION: SVHRSP could remarkably improve cognitive deficiency by inhibiting oxidative stress and neuroinflammation, thus representing an effective strategy to improve brain health.

2.
Eur J Pharmacol ; 978: 176704, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830458

ABSTRACT

Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.

4.
Adv Sci (Weinh) ; 10(14): e2205862, 2023 05.
Article in English | MEDLINE | ID: mdl-36922751

ABSTRACT

The pathology of sepsis-associated encephalopathy (SAE) is related to astrocyte-inflammation associated with aquaporin-4 (AQP4). The aim here is to investigate the effects of AQP4 associated with SAE and reveal its underlying mechanism causing cognitive impairment. The in vivo experimental results reveal that AQP4 in peripheral blood of patients with SAE is up-regulated, also the cortical and hippocampal tissue of cecal ligation and perforation (CLP) mouse brain has significant rise in AQP4. Furthermore, the data suggest that AQP4 deletion could attenuate learning and memory impairment, attributing to activation of astrocytic autophagy, inactivation of astrocyte and downregulate the expression of proinflammatory cytokines induced by CLP or lipopolysaccharide (LPS). Furthermore, the activation effect of AQP4 knockout on CLP or LPS-induced PPAR-γ inhibiting in astrocyte is related to intracellular Ca2+ level and sodium channel activity. Learning and memory impairment in SAE mouse model are attenuated by AQP4 knockout through activating autophagy, inhibiting neuroinflammation leading to neuroprotection via down-regulation of Nav 1.6 channels in the astrocytes. This results in the reduction of Ca2+ accumulation in the cell cytosol furthermore activating the inhibition of PPAR-γ signal transduction pathway in astrocytes.


Subject(s)
Cognitive Dysfunction , Sepsis-Associated Encephalopathy , Animals , Mice , Astrocytes/metabolism , Autophagy , Cognitive Dysfunction/etiology , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/pharmacology , Sepsis-Associated Encephalopathy/metabolism , Humans
5.
Brain Res Bull ; 190: 195-203, 2022 11.
Article in English | MEDLINE | ID: mdl-36191729

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disease. The main pathological feature is the degeneration and loss of dopaminergic neurons in the substantia nigra, which leads to the significant decrease of dopamine content in the striatum. Our recent studies have shown that scorpion venom heat-resistant synthetic peptide (SVHRSP) have protective effects on neuroinflammation. In this study, using C. elegans induced by 6-hydroxydopamine (6-OHDA) as neurodegenerative model, we investigated the effect of SVHRSP on dopaminergic neurons neurotoxicity. Our results implied that SVHRSP treatment could improve the motor capacity in 6-OHDA-induced C. elegans and improve dopaminergic neuron mediated food sensitivity behavior. After SVHRSP treatment, dopaminergic neuron degeneration induced by 6-OHDA was significantly prevented along with a decreased α-synuclein aggregation and restored lipid deposition in C. elegans induced by 6-OHDA. We also observed the reduced levels of reactive oxygen species (ROS) after SVHRSP treatment in model-building C. elegans. In addition, the genes related to apoptosis, oxidative stress, like ctl-1, egl-1and cat-2 in C. elegans induced by 6-OHDA upregulated after treatment with SVHRSP. In conclusion, SVHRSP may impose anti-PD effect through its neuroprotective action on dopaminergic neurons. This study elucidates the effect and related mechanism of SVHRSP on PD and provides evidences for the therapeutic treatment of PD.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Neurotoxicity Syndromes , Parkinson Disease , Scorpion Venoms , Animals , Oxidopamine/toxicity , Dopaminergic Neurons , Caenorhabditis elegans/genetics , Scorpion Venoms/pharmacology , Scorpion Venoms/therapeutic use , Neurodegenerative Diseases/pathology , Hot Temperature , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Dopamine/pharmacology , Parkinson Disease/drug therapy , Peptides/pharmacology , Disease Models, Animal
6.
J Neurosci ; 42(43): 8169-8183, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36100398

ABSTRACT

Aquaporin-4 (AQP4) is characterized by the formation of orthogonal arrays of particles (OAPs) comprising its M1 and M23 isoforms in the plasma membrane. However, the biological importance of OAP formation is obscure. Here, we developed an OAP depolymerization male mouse model by transgenic knock-in of an AQP4-A25Q mutation. Analyses of the mutant brain tissue using blue native polyacrylamide gel electrophoresis, super-resolution imaging, and immunogold electron microscopy revealed remarkably reduced OAP structures and glial endfeet localization of the AQP4-A25Q mutant protein without effects on its overall mRNA and protein expression. AQP4A25Q/A25Q mice showed better survival and neurologic deficit scores when cerebral edema was induced by water intoxication or middle cerebral artery occlusion/reperfusion. The brain water content and swelling of pericapillary astrocytic endfeet processes in AQP4A25Q/A25Q mice were significantly reduced, functionally supporting decreased AQP4 protein expression at the blood-brain barrier. The infarct volume and neuronal damage were also reduced in AQP4A25Q/A25Q mice in the middle cerebral artery occlusion/reperfusion model. Astrocyte activation in the brain was alleviated in AQP4A25Q/A25Q mice, which may be associated with decreased cell swelling. We conclude that the OAP structure of AQP4 plays a key role in its polarized expression in astrocytic endfeet processes at the blood-brain barrier. Therefore, our study provided new insights into intervention of cerebral cellular edema caused by stroke and traumatic brain injury through regulating AQP4 OAP formation.SIGNIFICANCE STATEMENT Aquaporin-4 (AQP4) is characterized by orthogonal arrays of particles (OAPs) comprising the M1 and M23 isoforms in the membrane. Here, an OAP depolymerization male mouse model induced by AQP4-A25Q mutation was first established, and the functions of OAP depolymerization in cerebral edema have been studied. The results revealed that AQP4 lost its OAP structure without affecting AQP4 mRNA and protein levels in AQP4-A25Q mice. AQP4-A25Q mutation mice has neuroprotective effects on cerebral edema induced by water intoxication and middle cerebral artery occlusion/reperfusion through relieving the activation of astrocytes and suppressed microglia-mediated neuroinflammation. We concluded that the OAP structure of AQP4 plays a key role in its polarized expression in astrocytic endfeet processes at the blood-brain barrier. Therefore, our study provided new insights into intervention of cerebral cellular edema caused by stroke and traumatic brain injury through regulating AQP4 OAP formation.


Subject(s)
Aquaporin 4 , Brain Edema , Brain Injuries, Traumatic , Neuroprotective Agents , Water Intoxication , Animals , Male , Mice , Aquaporin 4/genetics , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain Edema/genetics , Brain Edema/metabolism , Brain Injuries, Traumatic/metabolism , Cell Membrane/metabolism , Edema/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neuroprotective Agents/metabolism , Point Mutation , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Water Intoxication/metabolism
7.
Front Pharmacol ; 13: 919269, 2022.
Article in English | MEDLINE | ID: mdl-35910355

ABSTRACT

Improving healthy life expectancy by targeting aging-related pathological changes has been the spotlight of geroscience. Scorpions have been used in traditional medicine in Asia and Africa for a long time. We have isolated heat-resistant peptides from scorpion venom of Buthusmartensii Karsch (SVHRP) and found that SVHRP can attenuate microglia activation and protect Caenorhabditis elegans (C. elegans) against ß-amyloid toxicity. Based on the amino acid sequence of these peptides, scorpion venom heat-resistant synthesized peptide (SVHRSP) was prepared using polypeptide synthesis technology. In the present study, we used C. elegans as a model organism to assess the longevity-related effects and underlying molecular mechanisms of SVHRSP in vivo. The results showed that SVHRSP could prolong the lifespan of worms and significantly improve the age-related physiological functions of worms. SVHRSP increases the survival rate of larvae under oxidative and heat stress and decreases the level of reactive oxygen species and fat accumulation in vivo. Using gene-specific mutation of C. elegans, we found that SVHRSP-mediated prolongation of life depends on Daf-2, Daf-16, Skn-1, and Hsf-1 genes. These results indicate that the antiaging mechanism of SVHRSP in nematodes might be mediated by the insulin/insulin-like growth factor-1 signaling pathway. Meanwhile, SVHRSP could also up-regulate the expression of stress-inducing genes Hsp-16.2, Sod-3, Gei-7, and Ctl-1 associated with aging. In general, our study may have important implications for SVHRSP to promote healthy aging and provide strategies for research and development of drugs to treat age-related diseases.

9.
Front Pharmacol ; 12: 704715, 2021.
Article in English | MEDLINE | ID: mdl-34675802

ABSTRACT

Background: Intervention of neuroinflammation in central nervous system (CNS) represents a potential therapeutic strategy for a host of brain disorders. The scorpion Buthus martensii Karsch (BmK) and its venom have long been used in the Orient to treat inflammation-related diseases such as rhumatoid arthritis and chronic pain. Scorpion venom heat-resistant peptide (SVHRP), a component from BmK venom, has been shown to reduce seizure susceptibility in a rat epileptic model and protect against cerebral ischemia-reperfusion injury. As neuroinflammation has been implicated in chronic neuronal hyperexcitability, epileptogenesis and cerebral ischemia-reperfusion injury, the present study aimed to investigate whether SVHRP has anti-inflammatory property in brain. Methods: An animal model of neuroinflammation induced by lipopolysacchride (LPS) injection was employed to investigate the effect of SVHRP (125 µg/kg, intraperitoneal injection) on inflammagen-induced expression of pro-inflammatory factors and microglia activation. The effect of SVHRP (2-20 µg/ml) on neuroinflammation was further investigated in primary brain cell cultures containing microglia as well as the immortalized BV2 microglia culture stimulated with LPS. Real-time quantitative PCR were used to measure mRNA levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6 in hippocampus of animals. Protein levels of TNF-α, iNOS, P65 subunit of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) were examined by ELISA or western blot. Microglia morphology in animal hippocampus or cell cultures and cellular distribution of p65 were shown by immunostaining. Results: Morphological study demonstrated that activation of microglia, the main component that mediates the neuroinflammatory process, was inhibited by SVHRP in both LPS mouse and cellular model. Our results also showed dramatic increases in the expression of iNOS and TNF-α in hippocampus of LPS-injected mice, which was significantly attenuated by SVHRP treatment. In vitro results showed that SVHRP attenuated LPS-elicited expression of iNOS and TNF-α in different cultures without cell toxicity, which might be attributed to suppression of NF-κB and MAPK pathways by SVHRP. Conclusion: Our study demonstrates that SVHRP is able to inhibit neuroinflammation and microglia activation, which may underlie the therapeutic effects of BmK-derived materials, suggesting that BmK venom could be a potential source for CNS drug development.

10.
Br J Pharmacol ; 178(17): 3553-3569, 2021 09.
Article in English | MEDLINE | ID: mdl-33886140

ABSTRACT

BACKGROUND AND PURPOSE: Microglia-related inflammation is associated with the pathology of Parkinson's disease. Functional voltage-gated sodium channels (VGSCs) are involved in regulating microglial function. Here, we aim to investigate the effects of scorpion venom heat-resistant synthesized peptide (SVHRSP) on 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease-like mouse model and reveal its underlying mechanism. EXPERIMENTAL APPROACH: Unilateral brain injection of 6-OHDA was performed to establish Parkinson's disease mouse model. After behaviour test, brain tissues were collected for morphological analysis and protein/gene expression examination. Primary microglia culture was used to investigate the role of sodium channel Nav 1.6 in the regulation of microglia inflammation by SVHRSP. KEY RESULTS: SVHRSP treatment attenuated motor deficits, dopamine neuron degeneration, activation of glial cells and expression of pro-inflammatory cytokines induced by 6-OHDA lesion. Primary microglia activation and the production of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) were also suppressed by SVHRSP treatment. In addition, SVHRSP could inhibit mitogen-activated protein kinases (MAPKs) pathway, which plays pivotal roles in the pro-inflammatory response. Notably, SVHRSP treatment suppressed the overexpression of microglial Nav 1.6 induced by 6-OHDA and LPS. Finally, it was shown that the anti-inflammatory effect of SVHRSP in microglia was Nav 1.6 dependent and was related to suppression of sodium current and probably the consequent Na+ /Ca2+ exchange. CONCLUSIONS AND IMPLICATIONS: SVHRSP might inhibit neuroinflammation and protect dopamine neurons via down-regulating microglial Nav 1.6 and subsequently suppressing intracellular Ca2+ accumulation to attenuate the activation of MAPKs signalling pathway in microglia.


Subject(s)
Microglia , Scorpion Venoms , Animals , Cytokines , Hot Temperature , Lipopolysaccharides/toxicity , Mice , Oxidopamine , Scorpion Venoms/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...