Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 30(38): 385602, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31216513

ABSTRACT

The mechanism of self-assembling process of inorganic nanoparticle (NPs) is still an open question due to the various and non-additive interactions between NPs. Kotov et al reported that the semiconductor NPs can be self-assembled by external activation such as irradiation. In this paper, the twisted CdTe nanoribbons were successfully assembled with circular polar light activation based on the chiral selective resonance absorption. The effect of NP size on the morphology of assemblies under circular polar light irradiation is discussed by introducing a new mechanism of photooxidation induced dipole moment which decreases with increasing sizes of the NPs because of the change of band offsets at the CdS/CdTe interface. Moreover, we find that the competition between the dipole-dipole interaction and electrostatic repulsion can be modulated by the size of the NPs and the concentration of dispersion, which are the key points to produce the chiral twisted nanoribbons.

2.
Opt Lett ; 43(15): 3722-3725, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30067664

ABSTRACT

A chiral metastructure composed of spatially separated double semi-periodic helices is proposed and investigated theoretically and experimentally in this Letter. Chirality-dependent electromagnetically induced transparency (EIT) and a slow light effect in the microwave region are observed from a numerical parameter study, while experimental results from the 3D printing sample yield good agreement with the theoretical findings. The studied EIT phenomenon arises as a result of destructive interference by coupled resonances, and the proposed chiral metastructure can be applied in areas such as polarization communication, pump-probe characterization, and quantum computing areas.

3.
Nanotechnology ; 29(37): 375502, 2018 Sep 14.
Article in English | MEDLINE | ID: mdl-29939154

ABSTRACT

We present an effective surface-enhancement Raman scattering (SERS) substrate enabled by depositing metallic film on a liquid surface at room temperature. Thermal evaporation is used to deposit Au atoms on silicone oil surface and then form quasi-continuous films. Due to the isotropic characteristics of the liquid surface, this film consists of substantial nanoparticles with uniform diameter, which is different from films fabricated on solid substrates and can be served as an applicable substrate for SERS detection. With the assistance of this substrate, SERS signals of rhodamine 6G were significantly enhanced, the dependence between SERS spectra and film thickness was investigated. Analytical simulation results confirm the experimental observations and the superiorities of our proposed method for preparation of SERS substrate. This work provides a potential application of metallic film deposition on free-sustained surface and holds promise as an efficient sensor in rapid trace detection of small molecule analytes.

4.
Sci Rep ; 7(1): 582, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28373721

ABSTRACT

We have investigated numerically toroidal dipolar excitation at optical frequency in metamaterials whose unit cell consists of three identical Ag nanodisks and a SiO2 spacer on Ag substrate. The near-field plasmon hybridization between individual Ag nanodisks and substrate forms three magnetic dipolar resonances, at normal incidence of plane electromagnetic waves. The strong coupling among three magnetic dipolar resonances leads to the toroidal dipolar excitation, when space-inversion symmetry is broke along the polarization direction of incident light. The influences of some geometrical parameters on the resonance frequency and the excitation strength of toroidal dipolar mode are studied in detail. The radiated power from toroidal dipole is also compared with that from conventional electric and magnetic multipoles.

5.
Nanoscale Res Lett ; 12(1): 276, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28420225

ABSTRACT

We theoretically studied how to directly engineer the constitutive parameters of metamaterials for perfect absorbers of electromagnetic waves. As an example, we numerically investigated the necessary refractive index n and extinction coefficient k and the relative permittivity ε and permeability µ of a metamaterial anti-reflection layer, which could cancel the reflection from a hydrogenated amorphous silicon (α-Si:H) thin film on a metal substrate, within the visible wavelength range from 300 to 800 nm. We found that the metamaterial anti-reflection layer should have a negative refractive index (n < 0) for short-wavelength visible light but have a positive refractive index (n > 0) for long-wavelength visible light. The relative permittivity ε and permeability µ could be fitted by the Lorentz model, which exhibited electric and magnetic resonances, respectively.

6.
Nanotechnology ; 28(4): 045304, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-27981949

ABSTRACT

A one-step graphene patterning method is developed in this paper. A phase shifting mask is used to modulate incident laser beam spatially and generate graphene patterns by laser heating. Periodic graphene nanoribbon and nanomesh structures are fabricated by employing 1D and 2D phase shifting masks, respectively. The noncontact, simple procedure, easy handling and economic properties of this method make it promising towards graphene-based device fabrication.

7.
Nanotechnology ; 25(12): 125703, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24572147

ABSTRACT

We have demonstrated a novel method to enhance TiO2 photocatalysis by adopting a new ultrathin tetrahedral-amorphous-carbon (ta-C) film coating on Ag nanoparticles to create strong plasmonic near-field enhancement. The result shows that the decomposition rate of methylene blue on the Ag/10 Å ta-C/TiO2 composite photocatalyst is ten times faster than that on a TiO2 photocatalyst and three times faster than that on a Ag/TiO2 photocatalyst. This can be ascribed to the simultaneous realization of two competitive processes: one that excites the surface plasmons (SPs) of the ta-C-film/Ag-nanoparticle hybrid and provides a higher electric field near the ta-C/TiO2 interface compared to Ag nanoparticles alone, while the other takes advantage of the dense diamond-like ta-C layer to help reduce the transfer of photogenerated electrons from the conduction band of TiO2 to the metallic surface, since any electron transfer will suppress the excitation of SP modes in the metal nanoparticles.

8.
Rev Sci Instrum ; 82(8): 084901, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21895265

ABSTRACT

A reflective fiber temperature sensor system based on the ZnO thin film is proposed. The transmittance spectra and temperature dependent optical property of the sensing head with ZnO thin film is investigated theoretically and experimentally, and the temperature resolution of ∼1 °C is obtained in the temperature region of 300-773 K. The temperature sensing system is only related to the wavelength shift of transmittance spectra, and has a high stability without depending on the incident light intensity. This research results also indicate a fiber optical sensor with a broad temperature measurement range (10-1800 K) can be gained as a promising temperature sensing device, and can be applied into some extremely environments, such as aircraft, nuclear power station and power transmission system, and so on.

SELECTION OF CITATIONS
SEARCH DETAIL
...