Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Int J Biol Macromol ; 265(Pt 1): 130847, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490381

ABSTRACT

Getah virus (GETV) belongs to the Alphavirus genus in the Togaviridae family and is a zoonotic arbovirus causing disease in both humans and animals. The capsid protein (CP) of GETV regulates the viral core assembly, but the mechanism underlying this process is poorly understood. In this study, we demonstrate that CP undergoes liquid-liquid phase separation (LLPS) with the GETV genome RNA (gRNA) in vitro and forms cytoplasmic puncta in cells. Two regions of GETV gRNA (nucleotides 1-4000 and 5000-8000) enhance CP droplet formation in vitro and the lysine-rich Link region of CP is essential for its phase separation. CP(K/R) mutant with all lysines in the Link region replaced by arginines exhibits improved LLPS versus wild type (WT) CP, but CP(K/E) mutant with lysines substituted by glutamic acids virtually loses condensation ability. Consistently, recombinant virus mutant with CP(K/R) possesses significantly higher gRNA binding affinity, virion assembly efficiency and infectivity than the virus with WT-CP. Overall, our findings provide new insights into the understanding of GETV assembly and development of new antiviral drugs against alphaviruses.


Subject(s)
Alphavirus , Animals , Humans , Alphavirus/genetics , Alphavirus/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , RNA, Viral/genetics , RNA, Guide, CRISPR-Cas Systems , Genomics , Virion/genetics
2.
Nat Commun ; 15(1): 1045, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316778

ABSTRACT

G-quadruplexes (G4s) can recruit transcription factors to activate gene expression, but detailed mechanisms remain enigmatic. Here, we demonstrate that G4s in the CCND1 promoter propel the motility in MAZ phase-separated condensates and subsequently activate CCND1 transcription. Zinc finger (ZF) 2 of MAZ is a responsible for G4 binding, while ZF3-5, but not a highly disordered region, is critical for MAZ condensation. MAZ nuclear puncta overlaps with signals of G4s and various coactivators including BRD4, MED1, CDK9 and active RNA polymerase II, as well as gene activation histone markers. MAZ mutants lacking either G4 binding or phase separation ability did not form nuclear puncta, and showed deficiencies in promoting hepatocellular carcinoma cell proliferation and xenograft tumor formation. Overall, we unveiled that G4s recruit MAZ to the CCND1 promoter and facilitate the motility in MAZ condensates that compartmentalize coactivators to activate CCND1 expression and subsequently exacerbate hepatocarcinogenesis.


Subject(s)
Cyclin D1 , DNA-Binding Proteins , G-Quadruplexes , Transcription Factors , Humans , Bromodomain Containing Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Zinc Fingers/genetics
3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338812

ABSTRACT

Biosensors based on allosteric transcription factors have been widely used in synthetic biology. In this study, we utilized the Acinetobacter ADP1 transcription factor PobR to develop a biosensor activating the PpobA promoter when bound to its natural ligand, 4-hydroxybenzoic acid (4HB). To screen for PobR mutants responsive to 4-hydroxyphenylpyruvate(HPP), we developed a dual selection system in E. coli. The positive selection of this system was used to enrich PobR mutants that identified the required ligands. The following negative selection eliminated or weakened PobR mutants that still responded to 4HB. Directed evolution of the PobR library resulted in a variant where PobRW177R was 5.1 times more reactive to 4-hydroxyphenylpyruvate than PobRWT. Overall, we developed an efficient dual selection system for directed evolution of biosensors.


Subject(s)
Biosensing Techniques , Phenylpyruvic Acids , Trans-Activators , Trans-Activators/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription Factors/metabolism
4.
Commun Biol ; 6(1): 625, 2023 06 10.
Article in English | MEDLINE | ID: mdl-37301913

ABSTRACT

G-quadruplexes (G4s) regulate DNA replication and gene transcription, and are enriched in promoters without fully appreciated functional relevance. Here we show high selection pressure on putative G4 (pG4) forming sequences in promoters through investigating genetic and genomic data. Analyses of 76,156 whole-genome sequences reveal that G-tracts and connecting loops in promoter pG4s display lower or higher allele frequencies, respectively, than pG4-flanking regions, and central guanines (Gs) in G-tracts show higher selection pressure than other Gs. Additionally, pG4-promoters produce over 72.4% of transcripts, and promoter G4-containing genes are expressed at relatively high levels. Most genes repressed by TMPyP4, a G4-ligand, regulate epigenetic processes, and promoter G4s are enriched with gene activation histone marks, chromatin remodeler and transcription factor binding sites. Consistently, cis-expression quantitative trait loci (cis-eQTLs) are enriched in promoter pG4s and their G-tracts. Overall, our study demonstrates selective constraint of promoter G4s and reinforces their stimulative role in gene expression.


Subject(s)
G-Quadruplexes , Transcriptional Activation , Promoter Regions, Genetic , Genome , Genomics
5.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188909, 2023 07.
Article in English | MEDLINE | ID: mdl-37172651

ABSTRACT

As ubiquitously expressed transcripts in eukaryotes, circular RNAs (circRNAs) are covalently closed and lack a 5'-cap and 3'-polyadenylation (poly (A)) tail. Initially, circRNAs were considered non-coding RNA (ncRNA), and their roles as sponging molecules to adsorb microRNAs have been extensively reported. However, in recent years, accumulating evidence has demonstrated that circRNAs could encode functional polypeptides through the initiation of translation mediated by internal ribosomal entry sites (IRESs) or N6-methyladenosine (m6A). In this review, we collectively discuss the biogenesis, cognate mRNA products, regulatory mechanisms, aberrant expression and biological phenotypes or clinical relevance of all currently reported, cancer-relevant protein-coding circRNAs. Overall, we provide a comprehensive overview of circRNA-encoded proteins and their physiological and pathological functions.


Subject(s)
MicroRNAs , RNA, Circular , Humans , RNA, Circular/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger , Carcinogenesis/genetics , Cell Transformation, Neoplastic
6.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 780-789, 2023 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-36847105

ABSTRACT

Biochemistry and Molecular Biology are the cornerstone courses of talent training in the field of life science. Taking these course as an example, this study explored reconstructing the knowledge framework, developing teaching cases, sharing teaching resources, innovating teaching means and establishing ideological education patterns. Supported by the scientific research achievements with discipline characteristics and online teaching platform, this research explored and practiced an integrated curriculum reform mode. This mode is guided by scientific research and education, based on the course development, and driven by communication and cooperation. A shared space of "exchange, practice, openness and informatization" was developed to achieve free and independent integration of undergraduate and graduate teaching motivated by learning knowledge, resulting in an effective student training.


Subject(s)
Curriculum , Students , Humans , Learning , Molecular Biology/education , Biochemistry/education
7.
Cells ; 12(2)2023 01 04.
Article in English | MEDLINE | ID: mdl-36672157

ABSTRACT

Polydatin (PD) is a natural compound with anticancer activities, but the underlying mechanisms remain largely unclear. To understand how PD inhibited hepatocellular carcinoma (HCC), we studied PD treatments in HCC HepG2 and SK-HEP1 cells, and normal liver HL-7702 cells. PD selectively blocked the proliferation of HCC cells but showed low toxicity in normal cells, while the effects of doxorubicin (DOX) and cisplatin (DDP) on HCC and normal liver cells were opposite. In the cotreatment studies, PD synergistically improved the inhibitory activities of DOX and DDP in HCC cells but alleviated their toxicity in HL-7702 cells. Furthermore, RNA-seq studies of PD-treated HepG2 cells revealed multiple altered signaling pathways. We identified 1679 Differentially Expressed Genes (DEGs) with over a 2.0-fold change in response to PD treatment. Integrative analyses using the DEGs in PD-treated HepG2 cells and DEGs in a TCGA dataset of HCC patients revealed five PD-repressed DEGs regulating mitotic spindle midzone formation. The expression of these genes showed significantly positive correlation with poor clinical outcomes of HCC patients, suggesting that mitotic machinery was likely a primary target of PD. Our findings improve the understanding of PD's anticancer mechanisms and provide insights into developing effective clinical approaches in HCC therapies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Liver Neoplasms/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Cell Proliferation
8.
Int J Mol Sci ; 23(10)2022 May 14.
Article in English | MEDLINE | ID: mdl-35628304

ABSTRACT

In live cells, proteins and nucleic acids can associate together through multivalent interactions, and form relatively isolated phases that undertake designated biological functions and activities. In the past decade, liquid-liquid phase separation (LLPS) has gradually been recognized as a general mechanism for the intracellular organization of biomolecules. LLPS regulates the assembly and composition of dozens of membraneless organelles and condensates in cells. Due to the altered physiological conditions or genetic mutations, phase-separated condensates may undergo aberrant formation, maturation or gelation that contributes to the onset and progression of various diseases, including neurodegenerative disorders and cancers. In this review, we summarize the properties of different membraneless organelles and condensates, and discuss multiple phase separation-regulated biological processes. Based on the dysregulation and mutations of several key regulatory proteins and signaling pathways, we also exemplify how aberrantly regulated LLPS may contribute to human diseases.


Subject(s)
Neurodegenerative Diseases , Nucleic Acids , Humans , Proteins/metabolism
9.
World J Microbiol Biotechnol ; 38(6): 104, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35501522

ABSTRACT

Hydroxy-mandelic acid (HMA) is widely applied in pharmaceuticals, food and cosmetics. In this study, we aimed to develop an allosteric transcription factors (aTFs) based biosensor for HMA. PobR, an aTF for HMA analog 4-hydroxybenzoic acid, was used to alter its selectivity and create novel aTFs responsive to HMA by directed evolution. We established a PobR mutant library with a capacity of 550,000 mutants using error-prone PCR and Megawhop PCR. Through our screening, two mutants were obtained with responsiveness to HMA. Analysis of each missense mutation indicating residues 122-126 were involved in its PobR ligand specificity. These results showed the effectiveness of directed evolution in switching the ligand specificity of a biosensor and improving HMA production.


Subject(s)
Biosensing Techniques , Transcription Factors , Bacterial Proteins/genetics , Biosensing Techniques/methods , Ligands , Mandelic Acids , Transcription Factors/chemistry , Transcription Factors/genetics
10.
Cancers (Basel) ; 14(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35406384

ABSTRACT

Yin Yang 1 (YY1) plays an oncogenic role through regulating the expression of various cancer-related genes and activating key oncoproteins. Previous research reported that YY1 protein formed dimers or oligomers without definite biological implications. In this study, we first demonstrated the oncoprotein binding (OPB) and zinc finger (ZF) domains of YY1 as the regions involved in its intermolecular interactions. ZFs are well-known for protein dimerization, so we focused on the OPB domain. After mutating three hydrophobic residues in the OPB to alanines, we discovered that YY1(F219A) and YY1(3A), three residues simultaneously replaced by alanines, were defective of intermolecular interaction. Meanwhile, the OPB peptide could robustly facilitate YY1 protein oligomerization. When expressed in breast cancer cells with concurrent endogenous YY1 knockdown, YY1(F219A) and (3A) mutants showed better capacity than wt in promoting cell proliferation and migration, while their interactions with EZH2, AKT and MDM2 showed differential alterations, especially with improved EZH2 binding affinity. Our study revealed a crucial role of the OPB domain in facilitating YY1 oligomerization and suggested a mutually exclusive regulation between YY1-mediated enhancer formation and its activities in promoting oncoproteins.

11.
Nucleic Acids Res ; 50(9): 4917-4937, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35390165

ABSTRACT

As an oncogenic transcription factor, Yin Yang 1 (YY1) regulates enhancer and promoter connection. However, gaps still exist in understanding how YY1 coordinates coactivators and chromatin enhancer elements to assemble enhancers and super-enhancers. Here, we demonstrate that a histidine cluster in YY1's transactivation domain is essential for its formation of phase separation condensates, which can be extended to additional proteins. The histidine cluster is also required for YY1-promoted cell proliferation, migration, clonogenicity and tumor growth. YY1-rich nuclear puncta contain coactivators EP300, BRD4, MED1 and active RNA polymerase II, and colocalize with histone markers of gene activation, but not that of repression. Furthermore, YY1 binds to the consensus motifs in the FOXM1 promoter to activate its expression. Wild-type YY1, but not its phase separation defective mutant, connects multiple enhancer elements and the FOXM1 promoter to form an enhancer cluster. Consistently, fluorescent in situ hybridization (FISH) assays reveal the colocalization of YY1 puncta with both the FOXM1 gene locus and its nascent RNA transcript. Overall, this study demonstrates that YY1 activates target gene expression through forming liquid-liquid phase separation condensates to compartmentalize both coactivators and enhancer elements, and the histidine cluster of YY1 plays a determinant role in this regulatory mechanism.


Subject(s)
Chromatin , Enhancer Elements, Genetic , YY1 Transcription Factor , Gene Expression Regulation , Histidine/chemistry , In Situ Hybridization, Fluorescence , Nuclear Proteins/metabolism , YY1 Transcription Factor/chemistry , YY1 Transcription Factor/metabolism
12.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269825

ABSTRACT

Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Humans , Neoplasms/drug therapy , Oncogenes
13.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 3376-3382, 2021 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-34622644

ABSTRACT

Blackboard writing undertakes the dual task of knowledge transmission and classroom culture inheritance. Well-designed blackboard writing will not only help students to better memorize, understand and construct knowledge framework, but also create a serious but lively classroom atmosphere, strengthen the soul of moral education in the classroom, leading to improved quality of education. Taking the practice of blackboard writing in teaching the Biochemistry course as an example, the authors categorized the blackboard writing approaches according to the teaching objectives to be achieved, and discussed the necessity and application scope of each type of blackboard writing approach in the multimedia era. Our goal was to make blackboard writing, a conventional teaching approach, play an important role in the new era of classroom education.


Subject(s)
Students , Writing , Humans
14.
Int J Biol Sci ; 17(13): 3268-3280, 2021.
Article in English | MEDLINE | ID: mdl-34512145

ABSTRACT

Cancer is a life-threatening disease, but cancer therapies based on epigenetic mechanisms have made great progress. Enhancer of zeste homolog 2 (EZH2) is the key catalytic component of Polycomb repressive complex 2 (PRC2) that mediates the tri-methylation of lysine 27 on histone 3 (H3K27me3), a well-recognized marker of transcriptional repression. Mounting evidence indicates that EZH2 is elevated in various cancers and associates with poor prognosis. In addition, many studies revealed that EZH2 is also involved in transcriptional repression dependent or independent of PRC2. Meanwhile, long non-coding RNAs (lncRNAs) have been reported to regulate numerous and diverse signaling pathways in oncogenesis. In this review, we firstly discuss functional interactions between EZH2 and lncRNAs that determine PRC2-dependent and -independent roles of EZH2. Secondly, we summarize the lncRNAs regulating EZH2 expression at transcription, post-transcription and post-translation levels. Thirdly, we review several oncogenic pathways cooperatively regulated by lncRNAs and EZH2, including the Wnt/ß-catenin and p53 pathways. In conclusion, lncRNAs play a key role in the EZH2-regulated oncogenic network with many fertile directions to be explored.


Subject(s)
Carcinogenesis , Enhancer of Zeste Homolog 2 Protein/metabolism , Neoplasms/metabolism , RNA, Long Noncoding/metabolism , Animals , Humans
15.
Int J Biol Macromol ; 188: 215-225, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34371040

ABSTRACT

Extraction processes significantly alter the structural and functional properties of polysaccharides. In this study, we extracted polysaccharides from Chroogomphis rutilus fruiting bodies (designated as CRP) using four methods, including hot water, ultrasound, microwave and sequential ultrasound-microwave, and designated these polysaccharides as CRP-H, CRP-M, CRP-U and CRP-UM, respectively. All CRPs were heteropolysaccharides with semblable monosaccharide types of glucose, mannose and galactose, mainly constituted of α-d-glucopyranosyl-(1 â†’ 4). The extraction processes significantly affected the molecular weights, monosaccharide proportions, glycosidic bond ratios, branching degrees, triple-helix conformation and surface morphology of the CRPs. Among them, CRP-UM showed the highest yield and most potent antioxidative capacity in vitro and in HL-7702 cells, but the weakest activation of immunostimulatory response in RAW264.7 cells. In contrast, CRP-H exhibited the lowest yield but strongest immunostimulatory activity. Overall, microwave extraction could be utilized as a general and practical CRP extraction approach, based on its relatively high yield and bioactivities.


Subject(s)
Adjuvants, Immunologic/chemistry , Antioxidants/chemistry , Basidiomycota/chemistry , Polysaccharides/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Antioxidants/pharmacology , Fruit/chemistry , Humans , Mannose/chemistry , Mice , Molecular Weight , Monosaccharides/chemistry , Monosaccharides/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , RAW 264.7 Cells , Water/chemistry
16.
RNA Biol ; 18(sup1): 318-336, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34291726

ABSTRACT

ABBREVIATIONS: ARF: alternative reading frame, that is, p14ARF, or CDKN2A (cyclin-dependent kinase inhibitor 2A); ß-gal: ß-galactosidase; CLIP-seq: crosslinking and immunoprecipitation-sequencing; DMTF1: the cyclin D binding myb-like transcription factor 1; ESS/ESE: exonic splicing silencer/enhancer; Ex: exon; FBS: fetal bovine serum; Gluc: Gaussia luciferase; hnRNPs: heterogeneous nuclear ribonucleoproteins; In: intron; ISS/ISE: intronic splicing silencer/enhancer; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PSI: percent-splice-in; qPCR: quantitative real-time PCR; RIP: RNA immunoprecipitation; RNAseq: RNA sequencing; RT: reverse transcription; SF1: splicing factor 1; SR: serine/arginine-rich proteins; SRSF5: serine and arginine-rich splicing factor 5; TCGA: the cancer genome atlas; UCSC: University of California, Santa Cruz. WT: Wild type.


Subject(s)
Alternative Splicing , RNA Precursors/genetics , RNA Splicing Factors/metabolism , Serine-Arginine Splicing Factors/metabolism , Transcription Factors/genetics , Base Sequence , Humans , RNA Precursors/metabolism , RNA Splicing Factors/genetics , Sequence Homology , Serine-Arginine Splicing Factors/genetics , Transcription Factors/metabolism
17.
Cancers (Basel) ; 13(10)2021 May 16.
Article in English | MEDLINE | ID: mdl-34065631

ABSTRACT

Enhancer of zeste homolog 2 (EZH2) is a methyltransferase to mediate lysine 27 trimethylation in histone H3 (i.e., H3K27me3) and repress gene expression. In solid tumors, EZH2 promotes oncogenesis and is considered a therapeutic target. As a transcription factor, Yin Yang 1 (YY1) recruits EZH2 through its oncoprotein binding (OPB) domain to establish gene repression. In this study, we mapped the YY1 protein binding (YPB) domain on EZH2 to a region of 27 amino acids. Both YPB and OPB domain synthetic peptides could disrupt YY1EZH2 interaction, markedly reduce breast cancer cell viability, and efficiently inhibit tumor growth in a xenograft mouse model. We analyzed MDA-MB-231 cells treated with YPB, OPB, and control peptides by chromatin immunoprecipitation DNA sequencing (ChIP-seq) using an antibody against H3K27me3. YPB and OPB treatments altered H3K27me3 on 465 and 1137 genes, respectively, compared to the control. Of these genes, 145 overlapped between the two peptides. Among them, PTENP1, the PTEN pseudogene, showed reduced H3K27me3 signal when treated by either YPB or OPB peptide. Consistently, the two peptides enhanced both PTENP1 and PTEN expression with concomitantly reduced AKT activation. Further studies validated PTENP1's contribution to the anticancer activity of YPB and OPB peptides.

18.
Biochem Biophys Res Commun ; 561: 93-100, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34020144

ABSTRACT

AKT1 plays a key role in cell growth and survival, and its activation in cancers is mediated by different mechanisms. In this study, we investigated the potential of G-quadruplex (G4) formation by multiple consecutive G-tracts in the AKT1 promoter and its 3'-UTR. In circular dichroism analyses, synthetic oligonucleotides based on these G-tract regions showed molar ellipticity peaks at specific wavelengths of G4 structures. We verified G4 forming potential of these oligonucleotides using dimethyl sulfate footprinting, gel-shift and immunostaining assays. In reporter assays, mutations of the G-tracts in either the promoter or the 3'-UTR of AKT1 reduced expression mediated by these G-rich regions, suggesting positive regulation of AKT1 gene expression by these G4 structures. Furthermore, SP1 bound to its consensus sites regardless of the presence of G4 motifs in the AKT1 promoter, and both the G4 motifs and SP1 binding sites were needed to reach the strongest promoter strength.


Subject(s)
G-Quadruplexes , Neoplasms/genetics , Neoplasms/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , 3' Untranslated Regions , Binding Sites , Circular Dichroism/methods , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/metabolism , Promoter Regions, Genetic
19.
Biochim Biophys Acta Gen Subj ; 1865(7): 129911, 2021 07.
Article in English | MEDLINE | ID: mdl-33862123

ABSTRACT

BACKGROUND: Ellagic acid (EA) possesses prominent inhibitory activities against various cancers, including hepatocellular carcinoma (HCC). Our recent study demonstrated EA's activities in reducing HCC cell proliferation and tumor formation. However, the mechanisms of EA to exert its anticancer activities and its primary targets in cancer cells have not been systematically explored. METHODS: Cell proliferation assay and flow cytometric analysis were used to examine the effects of EA treatment on viability and apoptosis, respectively, of HepG2 cells. RNA-seq studies and associated pathway analyses by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to determine EA's primary targets. Differentially expressed genes (DEG) in EA-treated HepG2 cells were verified by RT-qPCR and Western blot. Integrative analyses of the RNA-seq dataset with a TCGA dataset derived from HCC patients were conducted to verify EA-targeted genes and signaling pathways. Interaction network analysis of the DEGs, shRNA-mediated knockdown, cell viability assay, and colony formation assay were used to validate EA's primary targets. RESULTS: EA reduced cell viability, caused DNA damage, and induced cell cycle arrest at G1 phase of HepG2 cells. We identified 5765 DEGs encoding proteins with over 2.0-fold changes in EA-treated HepG2 cells by DESeq2. These DEGs showed significant enrichment in the pathways regulating DNA replication and cell cycle progression. As primary targets, p21 was significantly upregulated, while MCM2-7 were uniformly downregulated in response to EA treatment. Consistently, p21 knockdown desensitized liver cells to EA in cell viability and colony formation assays. CONCLUSION: EA induced G1 phase arrest and promoted apoptosis of HCC cells through activating the p21 gene and downregulating the MCM2-7 genes, respectively. GENERAL SIGNIFICANCE: The discoveries in this study provide helpful insights into developing novel strategies in the therapeutic treatment of HCC patients.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/metabolism , Ellagic Acid/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms/metabolism , Transcriptome/drug effects , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Computational Biology , Gene Regulatory Networks , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , RNA-Seq
20.
Front Bioeng Biotechnol ; 9: 646995, 2021.
Article in English | MEDLINE | ID: mdl-33748091

ABSTRACT

Many single-use non-degradable plastics are a threat to life today, and several polyhydroxyalkanoates (PHAs) biopolymers have been developed in the bioplastic industry to place petrochemical-based plastics. One of such is the novel biomaterial poly(3-hydroxypropionate) [poly(3HP)] because of its biocompatibility, biodegradability, and high yield synthesis using engineered strains. To date, many bio-polymer-based functional composites have been developed to increase the value of raw microbial-biopolymers obtained from cheap sources. This review article broadly covers poly(3HP), a comprehensive summary of critical biosynthetic production pathways comparing the yields and titers achieved in different Microbial cell Factories. This article also provides extensive knowledge and highlights recent progress on biosensors' use to optimize poly(3HP) production, some bacteria host adopted for production, chemical and physical properties, life cycle assessment for poly(3HP) production using corn oil as carbon source, and some essential medical applications of poly(3HP).

SELECTION OF CITATIONS
SEARCH DETAIL
...