Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37836236

ABSTRACT

Dry direct seeding rice (DSR) is an emerging production system because of increasing labor and water scarcity in rice cultivation. The limited availability of rice cultivars suitable for dry direct seeding hampers the widespread adoption of this cultivation method in Northeast China. This study aimed to investigate grain production and plant characteristics associated with dry direct seeding rice. We conducted a field experiment on 79 japonica rice cultivars in Shenyang City, Liaoning Province, Northeast China, in 2020 and 2021. This study found that the grain yield of the tested rice cultivars ranged from 5.75-11.00 t ha-1, with a growth duration lasting between 144-161 days across the cultivars. These cultivars were then categorized into high yielding (HY), medium yielding (MY), and low yielding (LY) based on daily yield by using Ward's hierarchical clustering method. The higher grain yield for HY compared to MY and LY was attributed to more spikelets per unit area. The HY alleviated the conflict between higher panicle density and larger panicle size by improving the seedling emergence rate and productive stem rate. It also significantly increased shoot biomass at maturity. The HY reduced the period between seeding and beginning of heading (BBCH 51) and the proportion of dry matter partitioned to the leaf at the heading stage. However, it also increased the accumulation of dry matter in the grain and the proportion of dry matter partitioned to the grain at maturity. Furthermore, the HY markedly increased the harvest index and grain-leaf ratio, which are beneficial to coordinate the source-sink relationship. A quadratic function predicted that 98 days is the optimum growth duration before heading (BBCH 51) for achieving maximum yield. In conclusion, for dry direct seeding rice, it is appropriate to select high-yielding japonica inbred rice cultivars with shorter growth duration before heading (about 93-102 day), higher panicle number (about 450-500 × 104 ha-1), more spikelet number per panicle (about 110-130), higher seedling emergence rate (about 70-75%), higher productive stem rate (about 60-70%), and greater harvest index (about 50-55%).

2.
Front Microbiol ; 13: 918986, 2022.
Article in English | MEDLINE | ID: mdl-35966711

ABSTRACT

A comprehensive understanding of rice cultivation techniques and organic amendments affecting soil quality, enzyme activities and bacterial community structure is crucial. We investigated two planting methods (direct seeding and transplanting) of paddy rice (Oryza sativa) and organic amendments with rice straw and biochar on crop yield and soil biological and physicochemical properties. Rhizosphere bacterial communities at the maturity stage of rice growth were characterized through high-throughput 16S rRNA sequencing. Soil biochemical properties and enzyme activity levels were analyzed. Grain yield of paddy rice with transplanting increased 10.6% more than that with direct seeding. The application of rice straw increased grain yield by 7.1 and 8.2%, more than with biochar and the control, respectively. Compared to biochar and the control, the application of rice straw significantly increased sucrase, cellulase, protease, organic carbon, available phosphorus, nitrate, and ammonium. The application of biochar increased microbial biomass nitrogen and carbon, urease, pH, available nitrogen, and available potassium compared to the application of rice straw and the control. Principal coordinate analysis and dissimilarity distances confirmed significant differences among the microbial communities associated with planting methods and organic amendments. Bacteroidetes, Nitrospirae, Firmicutes, and Gemmatimonadetes abundance increased with rice straw relative to biochar and the control. The biochar addition was associated with significant increases in Chloroflexi, Patescibacteria, Proteobacteria, and Actinobacteria abundance. Pearson's correlation analyzes showed that Chloroflexi, Bacteroidetes and Nitrospirae abundance was positively correlated with grain yield. The relative abundance of these bacteria in soil may be beneficial for improving grain yield. These results suggest that planting methods and organic amendments impact soil biochemical characteristics, enzyme activity levels, and microbial community composition.

3.
Theor Appl Genet ; 135(1): 173-183, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34608507

ABSTRACT

KEY MESSAGE: Pi65, a leucine-rich repeat receptor-like kinase (LRR-RLK) domain cloned from Oryza sativa japonica, is a novel rice blast disease resistance gene. Rice blast seriously threatens rice production worldwide. Utilizing the rice blast resistance gene to breed rice blast-resistant varieties is one of the best ways to control rice blast disease. Using a map-based cloning strategy, we cloned a novel rice blast resistance gene, Pi65, from the resistant variety GangYu129 (abbreviated GY129, Oryza sativa japonica). Overexpression of Pi65 in the susceptible variety LiaoXing1 (abbreviated LX1, Oryza sativa japonica) enhanced rice blast resistance, while knockout of Pi65 in GY129 resulted in susceptibility to rice blast disease. Pi65 encodes two transmembrane domains, with 15 LRR domains and one serine/threonine protein kinase catalytic domain, conferring resistance to isolates of Magnaporthe oryzae (abbreviated M. oryzae) collected from Northeast China. There were sixteen amino acid differences between the Pi65 resistance and susceptible alleles. Compared with the Pi65-resistant allele, the susceptible allele exhibited one LRR domain deletion. Pi65 was constitutively expressed in whole plants, and it could be induced in the early stage of M. oryzae infection. Transcriptome analysis revealed that numerous genes associated with disease resistance were specifically upregulated in GY129 24 h post inoculation (HPI); in contrast, photosynthesis and carbohydrate metabolism-related genes were particularly downregulated at 24 HPI, demonstrating that disease resistance-associated genes were activated in GY129 (carrying Pi65) after rice blast fungal infection and that cellular basal metabolism and energy metabolism were inhibited simultaneously. Our study provides genetic resources for improving rice blast resistance and enriches the study of rice blast resistance mechanisms.


Subject(s)
Disease Resistance/genetics , Magnaporthe/physiology , Oryza/genetics , Plant Diseases/immunology , Protein Kinases/genetics , Cloning, Molecular , Gene Knockout Techniques , Genes, Plant , Magnaporthe/immunology , Oryza/enzymology , Oryza/immunology , Oryza/microbiology , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Protein Kinases/physiology , Transcriptome
4.
J Mater Chem B ; 9(36): 7461-7471, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34551049

ABSTRACT

BODIPY dyes have recently been used for photothermal and photodynamic therapy of tumors. However, complex multi-material systems, multiple excitation wavelengths and the unclear relationship between BODIPY structures and their PTT/PDT efficiency are still major issues. In our study, nine novel BODIPY near-infrared dyes were designed and successfully synthesized and then, the relationships between BODIPY structures and their PTT/PDT efficiency were investigated in detail. The results showed that modifications at position 3,5 of the BODIPY core with conjugated structures have better effects on photothermal and photodynamic efficiency than the modifications at position 2,6 with halogen atoms. Density functional theory (DFT) calculations showed that this is mainly due to the extension of the conjugated chain and the photoinduced electron transfer (PET) effect. By encapsulating BDPX-M with amphiphilic DSPE-PEG2000-RGD and lecithin, the obtained NPs not only show good water solubility and biological stability, but also could act as superior agents for photothermal and photodynamic synergistic therapy of tumors. Finally, we obtained BODIPY NPs that exhibited excellent photothermal and photodynamic effects at the same time under single irradiation with an 808 nm laser (photothermal conversion efficiency: 42.76%, A/A0: ∼0.05). In conclusion, this work provides a direction to design and construct phototherapeutic nanoparticles based on BODIPY dyes for tumor treatment.


Subject(s)
Biocompatible Materials/chemistry , Boron Compounds/chemistry , Nanoparticles/chemistry , Animals , Benzofurans/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Cell Survival/drug effects , Density Functional Theory , Electron Transport , HeLa Cells , Humans , Infrared Rays , Mice , Neoplasms/therapy , Oligopeptides/chemistry , Photochemotherapy , Photothermal Therapy/methods , Polyethylene Glycols/chemistry , Singlet Oxygen/metabolism , Transplantation, Heterologous
5.
Rice (N Y) ; 13(1): 36, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32514748

ABSTRACT

The utilization of heterosis has resulted in significant breakthroughs in rice breeding. However, the development of hybrid japonica has been slow in comparison with that of hybrid indica. The present review explores the history and current status of hybrid japonica breeding. With the creation of japonica cytoplasmic male sterility and photo-thermo-sensitive genic male sterile lines, both three-line and two-line systems of hybrid rice have been created, and a series of hybrid japonica rice varieties have been developed and cultivated widely. At the same time, some progress has been made in genetic research of molecular mechanism for heterosis and QTL mapping for traits such as fertility, stigma exposure and flower time. In addition, genomics and transcriptome have been widely used in the research of hybrid rice, which provides a strong support for its development. Although the research on hybrid japonica has made many advances, there are still some restrictive problems. Based on the research and production of hybrid japonica rice, the prospect and development strategies of hybrid japonica rice are analyzed.

6.
Phys Chem Chem Phys ; 22(8): 4508-4515, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32068228

ABSTRACT

Interfacial adsorption configuration plays a crucial role in influencing the photovoltaic performance of dye-sensitized solar cells (DSSCs), and thus, theoretical investigations are needed to further understand the impacts of different absorption configurations on stoichiometric and defective TiO2(101) surfaces on the short-circuit photocurrent density (JSC) and open-circuit voltage (VOC) of DSSCs. Herein, calculations of isolated dyes and dye/TiO2 systems were performed on the donor-π bridge-acceptor (D-π-A) type porphyrin sensitizers bearing different donor moieties and an α-cyanoacrylic acid anchoring group (T1-3), using DFT and TD-DFT methods. And, for the first time, comparative analysis of interfacial electron transfer (IET) and density of states (DOS) were carried out on dye/TiO2 systems with stoichiometric and defective surfaces to provide further insight into the electronic factors influencing the efficiency of DSSCs, which can well explain the experimental variation trends of JSC and VOC values. It turned out that attachment via the carboxyl and cynao groups in a tridentate binding mode can result in more efficient IET rates and an upshifted conduction band in comparison with those of the bidentate attachment. More interestingly, we found that the adsorption configuration on defective surfaces containing an O2c vacancy induced more upshifted CBM and relatively fast IET, especially for the bonding mode through two O atoms of the carboxyl group.

7.
Int J Mol Sci ; 21(3)2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31991733

ABSTRACT

: Heterosis is an interesting topic for both breeders and biologists due to its practical importance and scientific significance. Cultivated rice (Oryza sativa L.) consists of two subspecies, indica and japonica, and hybrid rice is the predominant form of indica rice in China. However, the molecular mechanism underlying heterosis in japonica remains unclear. The present study determined the genome sequence and conducted quantitative trait locus (QTL) analysis using backcross recombinant inbred lines (BILs) and BILF1 lines to uncover the heterosis-related loci for rice yield increase under a japonica genetic background. The BIL population was derived from an admixture variety Habataki and japonica variety Sasanishiki cross to improve the genetic diversity but maintain the genetic background close to japonica. The results showed that heterosis in F1 mainly involved grain number per panicle. The BILF1s showed an increase in grain number per panicle but a decrease in plant height compared with the BILs. Genetic analysis then identified eight QTLs for heterosis in the BILF1s; four QTLs were detected exclusively in the BILF1 population only, presenting a mode of dominance or super-dominance in the heterozygotes. An additional four loci overlapped with QTLs detected in the BIL population, and we found that Grains Height Date 7 (Ghd7) was correlated in days to heading in both BILs and BILF1s. The admixture genetic background of Habataki was also determined by subspecies-specific single nucleotide polymorphisms (SNPs). This investigation highlights the importance of high-throughput sequencing to elucidate the molecular mechanism of heterosis and provides useful germplasms for the application of heterosis in japonica rice production.


Subject(s)
Crosses, Genetic , Genome , Genomics , Hybrid Vigor/genetics , Inbreeding , Oryza/genetics , Plant Breeding , Quantitative Trait Loci , Chromosome Mapping , Crop Production , Genetic Linkage , Genomics/methods , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...