Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Int. j. morphol ; 37(4): 1353-1360, Dec. 2019. graf
Article in English | LILACS | ID: biblio-1040137

ABSTRACT

The myodural bridge (MDB) is confirmed that connecting the most of suboccipital muscles to the cervical dura mater through the posterior intervertebral spaces and widely exists in mammals and birds. In order to reveal whether the MDB is universally existing in amniota of vertebrates, we explored the existence and the morphological features of the MDB in the Trachemys scripta elegans. Twenty fresh red-eared slider specimens were observed by the gross anatomy dissection and histological analysis. In the results, three kind of muscles in the postoccipital region of the red-eared slider were found. The rectus capitis dorsum minor muscle originated from the posterior margin of the occiput (C0) and terminated at the spinous process of the atlas (C1). The transversospinales muscle was attached to the vertebral arch and the postzygapophysis of the atlas and extended to the spinous process of the axis (C2). The C2-C3 intertransversales muscle were extended from the postzygapophysis of C2 and the one of C3. The three muscles covered the dorsal interspaces among C0-C3, and meantime they were closely connected with dense connective tissues, which filled in these interspaces. Each of these thick dense connective tissue membranes sent off several short and strong fibrous bundles ventrally to merge with the cervical spinal dura mater. Furthermore the connective tissues connecting these muscles with cervical spinal dura mater directly were revealed under the microscopy and they consisted of parallel and intensive collagen fibers with orientation from dorsal to ventral. In conclusion, this study for the first time demonstrated the existence of the MDB in the testudines, in all of the dorsal atlantooccipital, atlantoaxial and C2-C3 intervertebral spaces. Based on our results and comparative anatomical evidences in recent year, it could be inferred that the MDB might be its highly conserved structure in the evolution of amniota.


Se confirma que el puente miodural (PMD) conecta la mayoría de los músculos suboccipitales con la duramadre cervical a través de los espacios intervertebrales posteriores y existe ampliamente en mamíferos y aves. Para revelar si el MDB existe universalmente en la amniota de vertebrados, exploramos la existencia y las características morfológicas del PMD en Trachemys scripta elegans. Veinte muestras se observaron mediante disección anatómica y análisis histológico. En los resultados, se encontraron tres tipos de músculos en la región occipital. El músculo recto capitis dorsum minor se originó en el margen posterior del occipital (C0) y terminó en el proceso espinoso del atlas (C1). El músculo transverso espinal se unió al arco vertebral y el proceso del atlas y se extendió al proceso espinoso del axis (C2). El músculo intertransversario C2-C3 se extendió entre los procesos transversos de C2 y el de C3. Los tres músculos cubrían los espacios intermedios dorsales entre C0-C3 y, mientras tanto, estaban estrechamente conectados con tejidos conectivos densos, que rellenaban estos espacios. Cada una de estas membranas densas de tejido conectivo envían varios haces fibrosos cortos y fuertes ventralmente para fusionarse con la duramadre espinal cervical. Además, los tejidos conectivos que conectan estos músculos con la duramadre cervical y espinal se revelaron directamente bajo microscopía y consistían en intensas fibras de colágeno, paralelas, con orientación desde dorsal a ventral. En conclusión, este estudio demostró por primera vez la existencia del PMD en los estudios de prueba, en todos los espacios dorsales atlantooccipital, atlantoaxial e intervertebral C2-C3. Sobre la base de nuestros resultados y las evidencias anatómicas comparativas de los últimos años, se podría inferir que el PMD podría ser una estructura altamente conservada en la evolución de la amniota.


Subject(s)
Animals , Turtles/anatomy & histology , Dura Mater/anatomy & histology , Biological Evolution , Head/anatomy & histology , Neck/anatomy & histology
2.
Sci Rep ; 7(1): 8248, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811472

ABSTRACT

The "myodural bridge" was described in literatures as a dense fibrous tissue connecting the sub-occipital musculature with the spinal dura mater in human studies. Now the concept of "myodural bridge" was perceived as an exact anatomical structure presumably essential for critical physiological functions in human body, and might exist in other mammals as well. To determine the existence of the "myodural bridge" in other mammals and to lay a foundation for the functional study, we examined representatives in five different mammalian orders. Based on the anatomical dissections, P45 plastinated sections and histological sections, we found that a dense fibrous tissue connected the rectus capitisdorsalis minor and the spinal dura mater through the dorsal atlanto-occipital interspace with or without the medium of the posterior atlanto-occipital membrane. These observed connective tissues were very similar to the "myodural bridge" previously described in humans. We proposed that the "myodural bridge", as an evolutionally conserved structure, presents in many other mammals. Moreover, we believed that the "myodural bridge" might be a homologous organ in mammals. Thus, this study could provide an insight for our understanding the physiological significance of the "myodural bridge", especially in human.


Subject(s)
Cervical Vertebrae/anatomy & histology , Connective Tissue/anatomy & histology , Dura Mater/anatomy & histology , Neck Muscles/anatomy & histology , Animals , Connective Tissue/physiology , Humans , Mammals
3.
PLoS One ; 12(5): e0177120, 2017.
Article in English | MEDLINE | ID: mdl-28545087

ABSTRACT

In the last two decades, many studies have focused on the muscles and dense connective tissues located in the suboccipital region. Our study investigated the existence of the second terminations originating from the suboccipital muscles, and the relationship between the variable types of the To Be Named Ligament (TBNL). Anatomical dissection was performed on 35 head-neck specimens. The existence of the second terminations of the suboccipital muscles was confirmed and various types of the TBNL were observed in this study. The second terminations originated from multiple suboccipital muscles including the rectus capitis posterior minor (RCPmi), rectus capitis posterior major (RCPma) and obliquus capitis inferior (OCI) muscles, merged and terminated at the TBNL. The overall incidence of the second terminations of the suboccipital muscles was 34.29% and it varied among the various suboccipital muscle origins. 28.57% of the second terminations originated from the RCPma; 11.43% was from the RCPmi and 8.57% was from the OCI. Furthermore, there was a significant relationship between the existence of second terminations and the particular type of the TBNL. 95% of the arcuate type of the TBNL was accompanied with the second terminations which attached to their turning part, whereas only 10% of all the radiate type of the TBNL was accompanied with the second terminations. This study for the first time described the second terminations originating from multiple suboccipital muscles and demonstrated the relationship with the various types of the TBNL. We speculated that the second terminations maintain the arcuate TBNL and transfer tensile forces to the Myodural Bridge (MDB), thereby modulating the physiological functions of the MDB.


Subject(s)
Ligaments/metabolism , Neck Muscles/metabolism , Neck Muscles/physiology , Connective Tissue/metabolism , Connective Tissue/physiology , Female , Head/physiology , Humans , Male , Neck/physiology , Tensile Strength/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...