Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(15)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731556

ABSTRACT

This paper presents a novel algorithm for detecting pavement cracks from mobile laser scanning (MLS) data. The algorithm losslessly transforms MLS data into a regular grid structure to adopt the proven image-based methods of crack extraction. To address the problem of lacking topology, this study assigns a two-dimensional index for each laser point depending on its scanning angle or acquisition time. Next, crack candidates are identified by integrating the differential intensity and height changes from their neighbors. Then, morphology filtering, a thinning algorithm, and the Freeman codes serve for the extraction of the edge and skeleton of the crack curves. Further than the other studies, this work quantitatively evaluates crack shape parameters: crack direction, width, length, and area, from the extracted crack points. The F1 scores of the quantity of the transverse, longitudinal, and oblique cracks correctly extracted from the test data reached 96.55%, 87.09%, and 81.48%, respectively. In addition, the average accuracy of the crack width and length exceeded 0.812 and 0.897. Experimental results demonstrate that the proposed approach is robust for detecting pavement cracks in a complex road surface status. The proposed method is also promising in serving the extraction of other on-road objects.

2.
Sensors (Basel) ; 19(5)2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30862001

ABSTRACT

Information, especially spatial distribution data, related to coastal raft aquaculture is critical to the sustainable development of marine resources and environmental protection. Commercial high spatial resolution satellite imagery can accurately locate raft aquaculture. However, this type of analysis using this expensive imagery requires a large number of images. In contrast, medium resolution satellite imagery, such as Landsat 8 images, are available at no cost, cover large areas with less data volume, and provide acceptable results. Therefore, we used Landsat 8 images to extract the presence of coastal raft aquaculture. Because the high chlorophyll concentration of coastal raft aquaculture areas cause the Normalized Difference Vegetation Index (NDVI) and the edge features to be salient for the water background, we integrated these features into the proposed method. Three sites from north to south in Eastern China were used to validate the method and compare it with our former proposed method using only object-based visually salient NDVI (OBVS-NDVI) features. The new proposed method not only maintains the true positive results of OBVS-NDVI, but also eliminates most false negative results of OBVS-NDVI. Thus, the new proposed method has potential for use in rapid monitoring of coastal raft aquaculture on a large scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...