Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 225: 310-317, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36356876

ABSTRACT

Polymer based protein engineering provides an attractive strategy to endow novel properties to protein and overcome the inherent limitations of both counterparts. The exquisite control of site and density of attached polymers on the proteins is crucial for the bioactivities and properties of the protein-polymer bioconjugates, but is still a challenge. Collagen is the major structural protein in extracellular matrix of animals. Based on the advancements of polymer-based protein engineering, collagen bioconjugates has been widely fabricated and applied as biomaterials. However, the site-specific synthesis of well-defined collagen-polymer bioconjugates is still not achieved. Herein, a versatile strategy for the specific modification of N-terminal α-amino groups in collagen was developed. Firstly, all reactive amino groups of tropocollagen (collagen with telopeptides) were protected by succinic anhydride. Then, the telopeptides were digested to give the active N-terminal α-amino groups, which were subsequently attached with poly(N-isopropylacrylamide) (PNIPAAm) via "grafting from" method based on the atom transfer radical polymerization (ATRP). The site-specific N-terminal PNIPAAm modified succinylated collagen was prepared and its structure, thermal responsive behaviour, and properties was explored.


Subject(s)
Collagen , Polymers , Animals , Polymers/chemistry
2.
Int J Biol Macromol ; 213: 416-426, 2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35661667

ABSTRACT

As a major component of extracellular matrixes (ECMs), collagen is an attractive biomaterial to fabricate porous scaffold for tissue engineering due to their similarity to the in vivo static microenvironment. However, the collagen-based porous scaffolds were difficult to mimic the dynamically remolded porous structure of ECM during the cell proliferation and tissue development, and always have poor mechanical property and not easy to handle. Here, natural collagen and partially denatured collagen was used to prepare the stepwise degradable hybrid bioscaffold with suitable mechanical property and dynamically remolded inner porous structure, which is desirable for the applications of tissue engineering. The collagen-based microporous scaffold was first prepared and used as physical support, then, the mechanical strength of which was reinforced by the import of the partially denatured collagen to give the hybrid bioscaffold. The fabrication conditions of the hybrid scaffolds were optimized, of which the thermal stability, mechanical property, and swelling property was explored. The stepwise enzymatic degradation process and the corresponding porous structure variation of the hybrid scaffold was confirmed by SEM and cell culture assays.


Subject(s)
Collagen , Tissue Scaffolds , Biocompatible Materials/chemistry , Collagen/chemistry , Extracellular Matrix , Tissue Engineering , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...