Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36014564

ABSTRACT

Polyacrylamide has promising applications in a wide variety of fields. However, conventional polyacrylamide is prone to hydrolysis and thermal degradation under high temperature conditions, resulting in a decrease in solution viscosity with increasing temperature, which limits its practical effect. Herein, combining molecular dynamics and practical experiments, we explored a facile and fast mixing strategy to enhance the thermal stability of polyacrylamide by adding common poloxamers to form the interpenetrating network hydrogel. The blending model of three synthetic polyacrylamides (cationic, anionic, and nonionic) and poloxamers was first established, and then the interaction process between them was simulated by all-atom molecular dynamics. In the results, it was found that the hydrogen bonding between the amide groups on all polymers and the oxygen-containing groups (ether and hydroxyl groups) on poloxamers is very strong, which may be the key to improve the high temperature resistance of the hydrogel. Subsequent rheological tests also showed that poloxamers can indeed significantly improve the stability and viscosity of nonionic polyacrylamide containing only amide groups at high temperatures and can maintain a high viscosity of 3550 mPa·S at 80 °C. Transmission electron microscopy further showed that the nonionic polyacrylamide/poloxamer mixture further formed an interpenetrating network structure. In addition, the Fourier transform infrared test also proved the existence of strong hydrogen bonding between the two polymers. This work provides a useful idea for improving the properties of polyacrylamide, especially for the design of high temperature materials for physical blending.


Subject(s)
Molecular Dynamics Simulation , Poloxamer , Acrylic Resins , Amides , Hydrogels/chemistry , Poloxamer/chemistry , Polymers/chemistry , Temperature
2.
J Colloid Interface Sci ; 589: 275-285, 2021 May.
Article in English | MEDLINE | ID: mdl-33472147

ABSTRACT

The diffusion of stubborn oils and organic pigments has become a severe environmental pollution problem. Promisingly, the combination of superhydrophobicity and photocatalysis is expected to provide an efficient, economical and simple solution. In this paper, a kind of superhydrophobic and super-lipophilicity polyurethane (PU)-based sponge was reported by a strategy of undergoing ferric tetroxide loading (Fe3O4@PU), polydopamine fixation (PDA-Fe3O4@PU), octadecylamine grafting (ODA-Fe3O4@PU) and molybdenum disulfide loading (MoS2-ODA-Fe3O4@PU) successively. The results show that the MoS2-ODA-Fe3O4@PU sponge exhibits outstanding superhydrophobicity (with maximum water contact angle of 161.64°), excellent oil absorption capacity (60-109 wt/wt), robust stability in extreme environments and great oil/water separation ability. In addition, the MoS2-loaded sponge demonstrates desirable outcomes in decomposing methyl orange and methylene blue under light source, and a dual-functional purification system with a heterogeneous polyurethane-based sponge (the upper part is MoS2-ODA-Fe3O4@PU and the bottom part is MoS2@PU) endowed with superhydrophobicity and photocatalysis can purify water by separating oils and decomposing methylene blue simultaneously.

SELECTION OF CITATIONS
SEARCH DETAIL
...