Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Neurobiol ; 41(6): 1311-1324, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32627090

ABSTRACT

MEG8 is involved in ischemia stroke, however, its role in ischemia stroke remains unknown. The current research aimed to investigate the effects and mechanisms of MEG8 in ischemic stroke. Mouse brain microvascular endothelial cells (BMECs) were treated by oxygen-glucose deprivation (OGD). Then, the expressions of MEG8 and miR-130a-5p were detected by quantitative reverse transcription-polymerase chain reaction (q-PCR). Cell counting kit-8 (CCK-8), wound-healing, tube formation, Western blot, and q-PCR assays were performed to detect the effects of MEG8 and miR-130a-5p on cell viability, migration, and angiogenesis and VEGFA expression. Bioinformatics, dual-luciferase reporter assay, and RNA immunoprecipitation analysis were carried out to investigate the targeting relationship between MEG8 and miR-130a-5p, and between miR-130a-5p and VEGFA. Then, rat middle cerebral artery occlusion (MCAO) model and MEG8 overexpression MCAO model were established, and neurological deficit and infarct volume of the model rats were evaluated. Finally, Western blot and q-PCR were carried out to detect the expressions of MEG8, miR-130a-5p, and VEGFA. MEG8 was upregulated and miR-130a-5p was downregulated in OGD-treated BMECs. MiR-130a-5p was found to be a target of MEG8, and VEGFA was predicted to be a potential target of miR-130a-5p. Downregulation of MEG8 inhibited the cell viability, migration, and angiogenesis and the expression of VEGFA via negatively regulating miR-130a-5p of BMECs treated by OGD/non-OGD. In addition, MEG8 reduced cerebral ischemia, neurological score and miR-130a-5p expression, and increased VEGFA expression of MCAO rat. Our findings proved that MEG8 regulates angiogenesis and attenuates cerebral ischemia after ischemic stroke via miR-130a-5p/VEGFA signaling.


Subject(s)
Brain Ischemia/metabolism , Ischemic Stroke/metabolism , MicroRNAs/biosynthesis , Protein Tyrosine Phosphatases, Non-Receptor/biosynthesis , Vascular Endothelial Growth Factor A/biosynthesis , Animals , Brain Ischemia/prevention & control , Cells, Cultured , Gene Knockdown Techniques/methods , Ischemic Stroke/prevention & control , Male , Mice , MicroRNAs/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
2.
Exp Ther Med ; 18(3): 1953-1960, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31410157

ABSTRACT

Remote ischemic preconditioning (IPreC) is an effective strategy to defend against cerebral ischemia/reperfusion (IR) injury; however, its mechanisms remain to be elucidated. The aim of the present study was to investigate the effect of IPreC on brain tissue following cerebral ischemia, as well as the underlying mechanisms. Adult male Sprague-Dawley rats were treated with IPreC for 72 h prior to the induction of transient cerebral ischemia and reperfusion. The results demonstrated that IPreC reduced the area of cerebral infarction in the IR rats by 2,3,5-triphenyl-tetrazolium chloride staining. In addition, cell apoptosis was markedly suppressed by IPreC with an increased expression of B-cell lymphoma 2 (Bcl-2)/Bcl-2-associatd X protein using Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assay and western blot analysis. IR induced a decrease in the level of superoxide dismutase, and IPreC significantly suppressed increased levels of malondialdehyde, lactate dehydrogenase and nitric oxide. The expression of CD11b and CD18 was markedly inhibited by IpreC unsing flow cytometry. Furthermore, IPreC markedly decreased the release of pro-inflammatory factors interleukin (IL)-6 and IL-1ß, and enhanced the level of anti-inflammatory factors (IL-10 and IL-1 receptor antagonist) by ELISA assay. Finally, IPreC reduced the levels of transforming growth factor-ß-activated kinase 1, phosphorylated-P65/P65, and tumor necrosis factor-α, indicating that the nuclear factor-κB pathway was involved in IPreC-mediated protection against cerebral ischemia. Taken together, the results suggested that IPreC decreased ischemic brain injury through alleviating free radical injury and the inflammatory response in cerebral IR rats.

3.
Oncol Lett ; 12(5): 3519-3522, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27900030

ABSTRACT

Arteriosclerosis poses a significant risk to human health and involves the thickening and hardening of the walls of arteries. Accumulated evidence demonstrates that aberrant proliferation of vascular smooth muscle cells (VSMCs) accounts for the onset and progression of arteriosclerosis. Suppression of their proliferation has been demonstrated to be an effective anti-arteriosclerosis strategy. Long non-coding RNAs (lncRNAs) have recently been observed to be implicated in the proliferation of VSMCs and arteriosclerosis. In this study, we observed that oleanolic acid (OA), a natural compound from plants, inhibited the proliferation of VSMCs. The expression of lincRNA-p21, an arteriosclerosis-associated lncRNA, was demonstrated to be elevated by OA treatment. Suppression of lincRNA-p21 rescued the effect of OA on the proliferation of VSMCs. Collectively, targeting lncRNA is a promising strategy for arteriosclerosis prevention and treatment, and OA ameliorates arteriosclerosis by increasing lncRNA levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...