Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1316: 342870, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969414

ABSTRACT

A plasmonic tilted fiber Bragg grating (TFBG)-based sensor for the detection of calcium ion (Ca2+) was proposed and demonstrated experimentally. Hydrogel material was synthesized by utilizing hydrogen bond recombination between cellulose nanocrystals (CNC) and polyvinyl alcohol (PVA). Sodium alginate (SA) was incorporated into this hydrogel material, resulting in a composite membrane with specific binding properties for Ca2+. The membrane was applied as a coating on the surface of a gold-coated TFBG. The CNC/PVA-SA modified gold on the TFBG surface enhanced the localized refractive index changes caused by variations of Ca2+ concentrations. The experimental results demonstrated an impressive limit of detection (LOD) of approximately 0.025 fM, which is five orders of magnitude better than the current LODs of similar Ca2+ sensors. And the proposed Ca2+ sensor exhibited a wide dynamic range of 10-16 M to 10-6 M.

2.
Bioresour Bioprocess ; 10(1): 28, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-38647882

ABSTRACT

Extractive adsorption is an integrated separation method employing a novel resin with both particle and liquid characteristics in terms of adsorption and extraction. In this study, the novel extractive adsorption polystyrene-divinylbenzene (PS-DVB) macroporous resin was synthesized by suspension polymerization, in which n-octanol (OL-PS-DVB) or mixed alcohols of n-octanol, undecyl alcohol, and tetradecyl alcohol (MA-PS-DVB) were added as porogen and enclosed in the resin skeleton after the reaction. The characterization of the two novel resins of OL-PS-DVB and MA-PS-DVB showed that they have large specific surface areas of 48.7 and 17.4 m2/g, respectively. Additionally, the two synthesized resins have much higher static adsorption capacities of 1,3-propanediol (511 and 473 mg/g) and dynamic adsorption capacities (312 and 267 mg/g) than traditional resins, because extractants enclosed in the resin can increase the adsorption capacity. Through Langmuir equation, the theoretical static maximum adsorption capacity of the mixed alcohols resin is 515 mg/g at 298 K and Gibbs free energy change of adsorption was -3781 J/mol, indicating that the adsorption process was spontaneous. In addition, the sorbent concentration effect in the resin was generated at high 1,3-propanediol (1,3-PDO) concentrations. The fitting of the Flocculation model can reveal that there is a possible relation between adsorption and flocculation. Compared to OL-PS-DVB, MA-PS-DVB showed better performance in the recovery yield of 1,3-PDO and other byproducts, the removal rates of the inorganic salt and protein, and the efficiency of recycled resin. For MA-PS-DVB, the recovery of 1,3-PDO, butyrate acid, acetic acid, and residual glycerol was 97.1%, 94.7%, 93.3%, and 90.3%, respectively. Simultaneously, the resin of MA-PS-DVB could remove 93.8% of inorganic salts and 90.9% of proteins in the concentrated fermentation broth. The two synthesized resins of OL-PS-DVB and MA-PS-DVB still had 90% or 92% of capacity for extractive adsorption of 1,3-propanediol after 10 times of recycling, which exhibited potential application in the separation of 1,3-propanediol from fermentation broth.

3.
Inorg Chem ; 59(9): 5983-5992, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32314913

ABSTRACT

Three-dimensional (3D) porous carbon materials have received substantial attention owing to their unique structural features. However, the synthesis of 3D porous carbon, especially 3D porous carbon with hollow spheres structures at the connection points, still pose challenges. Herein, we first develop a metal-organic complexes@melamine foam (MOC@MF) template strategy, by using hot-pressing and carbonization method to synthesize 3D porous carbon with hollow spheres structures (denoted as NOPCs). The formation mechanism of NOPCs can be attributed to the difference in Laplace pressure and surface energy gradient between the carbonized MOC and carbonized MF. These rare 3D porous carbons exhibit high BET surface area (2453.8 m2 g-1), N contents (10.5%), and O contents (16.3%). Moreover, NOPCs show significant amounts of toluene and methanol at room temperature, reaching as high as 1360 and 1140 mg g-1. The adsorption amounts of SO2 and CO2 for NOPCs are up to 93.1 and 445 mg g-1. Theoretical calculation indicates surfaces of porous carbon with N and O coexistence could strongly enhance adsorption with high adsorption energy of -65.83 kJ mol g-1.

4.
Nanoscale Res Lett ; 5(4): 769-72, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-20671775

ABSTRACT

Room temperature ferromagnetism (RTF) is observed in pure copper oxide (CuO) nanoparticles which were prepared by precipitation method with the post-annealing in air without any ferromagnetic dopant. X-ray photoelectron spectroscopy (XPS) result indicates that the mixture valence states of Cu1+ and Cu2+ ions exist at the surface of the particles. Vacuum annealing enhances the ferromagnetism (FM) of CuO nanoparticles, while oxygen atmosphere annealing reduces it. The origin of FM is suggested to the oxygen vacancies at the surface/or interface of the particles. Such a ferromagnet without the presence of any transition metal could be a very good option for a class of spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...