Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Food Chem X ; 22: 101442, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38746782

ABSTRACT

This study investigated the impact of different temperatures and durations on the structural and emulsifying properties of copra meal protein. Additionally, the stability of copra meal protein Pickering emulsions was assessed through rheological and interfacial characteristics. Findings revealed a positive correlation between emulsification properties and heating temperature and duration. Thermal aggregates, facilitated by hydrogen bonds, hydrophobic interactions, and disulfide bonds, significantly enhanced surface hydrophobicity. Heat-treated copra meal protein-based Pickering emulsions demonstrate enhanced adsorption at the oil-water interface and resistance to diffusion. The three-phase contact angle increases from 57.7° to 79.8° following heating at 95 °C for 30 min. The addition of NaCl and heating treatment did not affect emulsion particle size or interface adsorption ability. But it improved the rheological properties to varying degrees. These results offer valuable insights for optimizing the physicochemical and functional attributes of copra meal protein in the food industry.

2.
Food Chem ; 452: 139588, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38754168

ABSTRACT

In this study, sodium alginate/ soy protein isolate (SPI) microgels cross-linked by various divalent cations including Cu2+, Ba2+, Ca2+, and Zn2+ were fabricated. Cryo-scanning electron microscopy observations revealed distinctive structural variations among the microgels. In the context of gastric pH conditions, the degree of shrinkage of the microgels followed the sequence of Ca2+ > Ba2+ > Cu2+ > Zn2+. Meanwhile, under intestinal pH conditions, the degree of swelling was ranked as Zn2+ > Ca2+ > Ba2+ > Cu2+. The impact of these variations was investigated through in vitro digestion studies, revealing that all microgels successfully delayed the release of ß-carotene within the stomach. Within the simulated intestinal fluid, the microgel cross-linked with Zn2+ exhibited an initial burst release, while those cross-linked with Cu2+, Ba2+, or Ca2+ displayed a sustained release pattern. This research underscores the potential of sodium alginate/SPI microgels cross-linked with different divalent cations as efficient controlled-release delivery systems.

3.
Food Chem X ; 22: 101365, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38623506

ABSTRACT

This review focuses on changes in nutrition and functional properties of protein-rich foods, primarily attributed to alterations in protein structures. We provide a comprehensive overview and comparison of commonly used laboratory methods for protein structure identification, aiming to offer readers a convenient understanding of these techniques. The review covers a range of detection technologies employed in food protein analysis and conducts an extensive comparison to identify the most suitable method for various proteins. While these techniques offer distinct advantages for protein structure determination, the inherent complexity of food matrices presents ongoing challenges. Further research is necessary to develop and enhance more robust detection methods to improve accuracy in protein conformation and structure analysis.

4.
Food Chem ; 448: 139164, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38574717

ABSTRACT

The use of soy protein isolate (SPI) nanoparticles as a stabilizer in nano-emulsion systems has garnered significant interest. While metal-phenolic networks (MPNs) have been explored for their multifunctional surface modification capabilities, their integration with food protein-based delivery systems remains less explored. In this study, we attempt to develop a novel strategy to encapsulate cinnamaldehyde using MPNs (EGCG-Fe3+) with self-assembling soy protein nanoparticles (SE-Fe NPs) as a stabilizer for nano-emulsions. UV, Raman, and X-ray photoelectron spectroscopy analyses demonstrated that SE-Fe NPs were generated through metal-phenolic coordination and covalent interactions. SE-Fe NPs had a narrower particle size distribution and enhanced radical scavenging (up to 3.35-fold), as well as thermal stability. Furthermore, the smaller droplet size, higher modulus, higher cinnamaldehyde encapsulation efficiency (from 63.5% to 84.2%), and improved bio-accessibility of SE-Fe NPs stabilized nano-emulsions delivery system demonstrated in this study shows promising future applications in the food industry.

5.
Carbohydr Polym ; 332: 121919, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431397

ABSTRACT

The differences in the gelling properties of soy protein isolate (SPI) and soy protein isolate amyloid fibrils (SAFs) as well as the role of cellulose nanocrystals (CNC) in regulating their gel behaviors were investigated in this study. The binding of CNC to ß-conglycinin (7S), glycinin (11S), and SAFs was predominantly driven by non-covalent interactions. CNC addition reduced the particle size, turbidity, subunit segments, and crystallinity of SPI and SAFs, promoted the conversion of α-helix to ß-sheet, improved the thermal stability, exposed more tyrosine and tryptophan residues, and enhanced the intermolecular interactions. A more regular and ordered lamellar network structure was formed in the SAFs-CNC composite gel, which could be conducive to the improvement of gel quality. This study would provide theoretical reference for the understanding of the regulatory mechanism of protein amyloid fibrils gelation as well as the high-value utilization of SAFs-CNC complex as a functional protein-based material or food ingredient in food field.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Soybean Proteins/chemistry , Amyloid/chemistry , Particle Size
6.
Carbohydr Polym ; 332: 121903, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431410

ABSTRACT

The utilization of naturally derived biodegradable polymers, including proteins, polysaccharides, and polyphenols, holds significant promise in addressing environmental concerns and reducing reliance on nonrenewable resources. This study aimed to develop films with enhanced UV resistance and antibacterial capabilities by covalently cross-linking soy protein isolate (SPI) with dialdehyde starch (DAS) through the incorporation of tannic acid (TA). The covalent crosslinking of TA with DAS and SPI was shown to establish a stable chemical cross-linking network. The tensile strength of the resulting SPI/DAS/15TA film exhibited a remarkable increase of 208.27 % compared to SPI alone and 52.99 % compared to SPI/DAS film. Notably, the UV absorption range of SPI/DAS/10TA films extended from 200 nm to 389 nm. This augmentation can be attributed to the oxidation of TA's phenolic hydroxyl groups to quinone under alkaline conditions, which then facilitated cross-linking with the SPI chain via Michael addition and Schiff base reactions. Furthermore, the film demonstrated robust antibacterial properties due to the incorporation of TA. Collectively, the observed properties highlight the significant potential of the SPI/DAS/10TA film for applications in food packaging, where its enhanced mechanical strength, UV resistance, and antibacterial characteristics can contribute to improved product preservation and safety.


Subject(s)
Food Packaging , Polyphenols , Soybean Proteins , Starch/analogs & derivatives , Soybean Proteins/chemistry , Anti-Bacterial Agents/pharmacology
7.
Food Chem ; 447: 138975, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38489882

ABSTRACT

Here, the influence and potential mechanism by which cellulose nanocrystals (CNC) collaborated with Ca2+ enhancing the heat-induced gelation of pea protein isolate (PPI) were investigated. It was found that the combination of 0.45% CNC and 15 mM Ca2+ synergistically increased the gel strength (from 14.18 to 65.42 g) and viscoelasticity of PPI while decreased the water holding capacity. The improved particle size, turbidity, and thermostability as well as the reduced solubility, crystallinity, and gel porosity were observed in CNC/CaCl2 composite system. CNC fragments bind to specific amino acids in 11S legumin and 7S vicilin mainly through hydrogen bonding and van der Waals forces. Moreover, changes in the protein secondary structure and enhancement of the molecular interaction induced by CNC and Ca2+ could favor the robust gel network. The results will provide a new perspective on the functional regulation of pea protein and the creation of pea protein gel-based food.


Subject(s)
Nanoparticles , Pea Proteins , Cellulose/chemistry , Calcium , Gels/chemistry , Water/chemistry , Nanoparticles/chemistry
8.
Food Chem ; 447: 138992, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38503066

ABSTRACT

The low solubility limits the utilization of other functional characteristics of wheat gluten (WG). This study effectively improved the solubility of WG through protease modification and explored the potential mechanism of protease modification to enhance the solubility of WG, further stimulating the potential application of WG in the food industry. Solubility of WG modified with alkaline protease, complex protease, and neutral protease was enhanced by 98.99%, 54.59%, and 51.68%, respectively. Notably, the content of ß-sheet was reduced while the combined effect of hydrogen bond and ionic bond were increased after protease modification. Meanwhile, the reduced molecular size and viscoelasticity as well as the elevated surface hydrophobicity, thermostability, water absorption capacity, and crystallinity were observed in modified WG. Moreover, molecular docking indicated that protease was specifically bound to the amino acid residues of WG through hydrogen bonding, hydrophobic interaction, and salt bridge.


Subject(s)
Peptide Hydrolases , Triticum , Peptide Hydrolases/metabolism , Triticum/chemistry , Molecular Docking Simulation , Glutens/chemistry , Amino Acids/metabolism
9.
Foods ; 13(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397607

ABSTRACT

This study investigated the impact of chitosan (CH, 1%) and aloe vera gel (AL, 30%) edible coatings on the preservation of blue honeysuckle quality during a 28-day storage at -1 °C. Coating with CH, AL, and CH+AL led to notable enhancements in several key attributes. These included increased firmness, total soluble solids, acidity, pH, and antioxidant capacity (measured through DPPH, ABTS, and FRAP assays), as well as the preservation of primary (ascorbic acid) and secondary metabolites (TPC, TAC, and TFC). The TAC and TFC levels were approximately increased by 280% and 17%, respectively, in coated blue honeysuckle after 28 d compared to uncoated blue honeysuckle. These coatings also resulted in reduced weight loss, respiration rate, color, abscisic acid, ethylene production, and malondialdehyde content. Notably, the CH+AL treatment excelled in preserving secondary metabolites and elevating FRAP-reducing power, demonstrating a remarkable 1.43-fold increase compared to the control after 28 days. Overall, CH+AL exhibited superior effects compared to CH or AL treatment alone, offering a promising strategy for extending the shelf life and preserving the quality of blue honeysuckle during storage.

10.
Article in English | MEDLINE | ID: mdl-38359947

ABSTRACT

The growing demand for sustainable and healthy food alternatives has led to a significant increase in interest in plant-based protein products. Among the various techniques used in creating meat analogs, high-moisture extrusion (HME) stands out as a promising technology for developing plant-based protein products that possess desirable texture and mouthfeel. During the extrusion process, plant proteins undergo a state transition, causing their rheological properties to change, thereby influencing the quality of the final extrudates. This review aims to delve into the fundamental aspects of texturizing plant proteins using HME, with a specific focus on the rheological behavior exhibited by these proteins throughout the process. Additionally, the review explores the future of HME from the perspective of novel raw materials and technologies. In summary, the objective of this review is to provide a comprehensive understanding of the potential of HME technology in the development of sustainable and nutritious plant-based protein products. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 15 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

11.
Food Chem X ; 20: 100995, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144716

ABSTRACT

Electrospun films (ESF) are gaining attention for active delivery due to their biocompatibility and biodegradability. This study investigated the impact of adding soy protein amyloid fibrils (SAFs) to ESF. Functional ESF based on SAFs/pullulan were successfully fabricated, with SAFs clearly observed entangled in the electrospun fibers using fluorescence microscopy. The addition of SAFs improved the mechanical strength of the ESF threefold and increased its surface hydrophobicity from 24.8° to 49.9°. Moreover, the ESF demonstrated antibacterial properties against Escherichia coli and Staphylococcus aureus. In simulated oral disintegration tests, almost 100% of epigallocatechin gallate (EGCG) dissolved within 4 min from the ESF. In summary, the incorporation of SAFs into ESF improved their mechanical strength, hydrophobicity, and enabled them to exhibit antibacterial properties, making them promising candidates for active delivery applications in food systems. Additionally, the ESF showed efficient release of EGCG, indicating their potential for controlled release of bioactive compounds.

12.
Food Chem X ; 20: 100921, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144774

ABSTRACT

Hydrolyzed proteins, which are considered to possess significant bioactive properties such as antioxidant and high digestibility, have garnered increasing interest as food ingredients. This study investigates the feasibility of using hydrolyzed wheat gluten (HWG) and soy protein concentrate (SPC) in various ratios to create meat analogues using high-moisture extrusion technology. Results indicate that meat analogues with 40% HWG addition to SPC have a better texture and greater similarities in terms of hardness, chewiness, and toughness to chicken meat than meat analogues with 40% wheat gluten (WG) addition to SPC. Additionally, the meat analogues with HWG showed high antioxidant capacity, protein digestibility, and amino acid composition, indicating potential health benefits. These findings indicate that HWG could serve as a texture modifier to improve both the texture and nutritional content of meat analogues.

13.
Food Res Int ; 174(Pt 1): 113495, 2023 12.
Article in English | MEDLINE | ID: mdl-37986497

ABSTRACT

The aim of this study was to investigate a more practical method for obtaining non-extractable polyphenols (NEPPs) from blue honeysuckle fruit pomace. Three methods, namely acid, alkaline, and enzymatic hydrolysis, were utilized to extract NEPPs. The findings indicated that alkaline hydrolysis was the most effective method for releasing NEPPs, which demonstrated higher levels of total flavonoid content (TFC) and total phenolic content (TPC) from blue honeysuckle fruit pomace. Additionally, higher TPC and TFC levels were related to a stronger antioxidant capacity. Qualitative and quantitative analysis using HPLC-HR-TOF-MS/MS revealed that acid hydrolysis resulted in a greater concentration of certain phenolic acids, while alkaline hydrolysis yielded a higher concentration of flavonoids, and enzymatic hydrolysis produced a wider range of phenolic compositions. Despite the fact that enzymatic hydrolysis is considered a gentler method, the researchers concluded that alkaline hydrolysis was the most appropriate method for obtaining NEPPs from blue honeysuckle fruit pomace.


Subject(s)
Lonicera , Polyphenols , Polyphenols/analysis , Antioxidants/analysis , Fruit/chemistry , Tandem Mass Spectrometry , Phenols/analysis , Flavonoids
14.
Front Plant Sci ; 14: 1226794, 2023.
Article in English | MEDLINE | ID: mdl-37780523

ABSTRACT

Globally, the species of Amanita are key components of ectomycorrhizal ecosystems. Some of them are widely known as poisonous or edible fungi. Although many new Amanita species from China have been described, the species diversity of Yanshan Mountains remains unknown. We here describe three new species, namely, A. borealis sp. nov. (Sect. Amanita), A. brunneola sp. nov. (Sect. Caesareae), and A. yanshanensis sp. nov. (Sect. Validae), based on morphological observations and molecular phylogenetic analyses. In addition, nine known species, namely, A. caesareoides (Sect. Caesareae), A. chiui (Sect. Vaginatae), A. muscaria (Sect. Amanita), A. oberwinklerana (Sect. Roanokenses), A. ovalispora (Sect. Vaginatae), A. subglobosa (Sect. Amanita), A. subjunquillea (Sect. phalloideae), A. vaginata var. vaginata (Sect. Vaginatae), and A. virosa (Sect. phalloideae), were reported from Yanshan Mountains for the first time. Our results emphasize that China has a high diversity of Amanita species and that additional studies are required to understand the exact species number. These findings play a crucial role in Amanita toxin research and ecological conservation. This study investigated the areas where Amanita species-related research is lacking. The study also attempted to better understand Amanita distribution and thus contribute to related research. This study enriches the species diversity of Amanita in Yanshan Mountains and offers additional data supporting the macrofungal systematics, toxin research, and diversity and ecological studies of Amanita in future studies.

15.
Mycology ; 14(3): 190-203, 2023.
Article in English | MEDLINE | ID: mdl-37583457

ABSTRACT

Phyllosticta (Phyllostictaceae, Botryosphaeriales) species are widely distributed globally and constitute a diverse group of pathogenic and endophytic fungi associated with a broad range of plant hosts. In this study, four new species of Phyllosticta, i.e. P. endophytica, P. jiangxiensis, P. machili, and P. xinyuensis, were described using morphological characteristics and multi-locus phylogeny based on the internal transcribed spacer region (ITS) with intervening 5.8S rRNA gene, large subunit of rRNA gene (nrLSU), translation elongation factor 1-alpha gene (tef1), actin gene (act), and glyceraldehyde-3-phosphate dehydrogenase gene (gapdh). Phyllosticta machili is the first species of this genus reported to infect plants of the Machilus genus.

16.
Carbohydr Polym ; 319: 121181, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567717

ABSTRACT

The current serious environmental problems have greatly encouraged the design and development of food packaging materials with environmental protection, green, and safety. This study aims to explore the synergistic effect and corresponding mechanism of cellulose nanocrystals (CNC) and CaCl2 to enhance the film-forming properties of pea protein isolate (PPI). The combination of 0.5 % CNC and 4.5 mM CaCl2 resulted in a 76.6 % increase in tensile strength when compared with pure PPI-based film. Meanwhile, this combination effectively improved the barrier performance, surface hydrophobicity, water resistance, and biodegradability of PPI-based film. The greater crystallinity, viscoelasticity, lower water mobility, and improved protein spatial conformation were also observed in CNC/CaCl2 composite film. Compared with the control, the main degradation temperature of composite film was increased from 326.23 °C to 335.43 °C. The CNC chains bonded with amino acid residue of pea protein at specific sites via non-covalent forces (e.g., hydrogen bonds, Van der Waals forces). Meanwhile, Ca2+ promoted the ordered protein aggregation at suitable rate and degree, accompanied by the formation of more disulfide bonds. Furthermore, proper Ca2+ could strengthen the cross-linking and interaction between CNC and protein, thereby establishing a stable network structure. The prepared composite films are expected to be used for strawberry preservation.


Subject(s)
Nanoparticles , Pea Proteins , Cellulose/chemistry , Calcium , Calcium Chloride , Water/chemistry , Nanoparticles/chemistry
17.
Biomaterials ; 301: 122216, 2023 10.
Article in English | MEDLINE | ID: mdl-37413843

ABSTRACT

The hierarchically porous property of CaCO3 has attracted considerable attention in the field of active delivery ingredients due to its high adsorption capacity. Here, a facile and high-efficient approach to control the calcification processes of CaCO3 ending with calcite microparticles with superior porosity and stability is reported and evaluated. In this work, a series of quercetin promoted CaCO3 microparticles, using soy protein isolate (SPI) as entrapment agent, was synthesized, characterized, and their digestive behavior and antibacterial activity were evaluated. Results obtained indicated that quercetin showed good ability to direct the calcification pathway of amorphous calcium carbonate (ACC) with the formation of flower- and petal-like structures. The quercetin-loaded CaCO3 microparticles (QCM) had a macro-meso-micropore structure, which was identified to be the calcite form. The macro-meso-micropore structure provided QCM with the largest surface area of 78.984 m2g-1. The loading ratio of SPI to QCM was up to 200.94 µg per mg of QCM. The protein and quercetin composite microparticles (PQM) were produced by simply dissolving the CaCO3 core, and the obtained PQM was used for the delivery of quercetin and protein. Thermogravimetric analysis showed PQM presented with good thermal stability without the CaCO3 core. Furthermore, minor discrepancy was noted in protein conformational structures after removing the CaCO3 core. In vitro digestion revealed that approximately 80% of the loaded quercetin was released from PQM during intestinal digestion, and the released quercetin exhibited efficient transportation across the Caco-2 cell monolayer. More importantly, the PQM digesta retained enhanced antibacterial activities to inhibit growth of Escherichia coli and Staphylococcus aureus. Porous calcites show a high potential as a delivery system for food applications.


Subject(s)
Calcium Carbonate , Quercetin , Humans , Porosity , Quercetin/pharmacology , Calcium Carbonate/chemistry , Caco-2 Cells , Anti-Bacterial Agents/pharmacology , Proteins , Escherichia coli
18.
Foods ; 12(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37297422

ABSTRACT

Rosemary (Rosmarinus officinalis L.) extract (RE) is one of the most efficient natural antioxidants and can significantly inhibit oil oxidation during storage or heating. The present study determined the protective capacity and mechanism of RE on the thermal oxidative stability of different vegetable oils by adding RE (70% carnosic acid) to five types of vegetable oils (soybean oil, rapeseed oil, cottonseed oil, rice bran oil, and camellia oil) and measuring the physicochemical indices (fatty acid composition, tocopherol content, total phenolic content, and free radical scavenging capacity), induction period, and thermal oxidative kinetic parameters. The relationships between the antioxidant capacity and thermal stability parameters were determined. The results show that, compared with artificial antioxidants, RE significantly increased the free radical scavenging capacity, induction period, and activation energy (Ea) of thermal oxidation, decreasing the thermal oxidation reaction rate (k) of all vegetable oils, especially rice bran oil. A Spearman correlation analysis showed that the induction period (IP) and Ea showed a significant positive correlation, the combination of which effectively reflected the efficiency of antioxidants and explained the inhibition mechanism of RE towards oil thermal oxidation.

19.
J Texture Stud ; 54(3): 349-350, 2023 06.
Article in English | MEDLINE | ID: mdl-37317802

Subject(s)
Meat Products , Plants
20.
Food Chem ; 427: 136605, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37390741

ABSTRACT

In this paper, the structures of polyphenols and their bioactivity of black mulberry (Morus nigra L.) cv. 'Heisang No. 1' were comprehensively analyzed. The 11 anthocyanins and 20 non-anthocyanin phenolic compounds were identified and quantified by liquid chromatography high-resolution time-of-flight mass spectrometry (LC-HR-TOF/MS2). The cyanidin-3-glucoside and cyanidin-3-rutinoside were the major anthocyanins in the black mulberry. In addition, the black mulberry showed potent antioxidant capacity as assessed by DPPH, ABTS, and FRAP assays. Black mulberry anthocyanins exhibited stronger inhibition activities against α-amylase, α-glucosidase, and lipase compared to non-anthocyanin polyphenols, with IC50 values of 1.10, 4.36, and 9.18 mg/mL, respectively. The total anthocyanin content of black mulberry crude extracts and anthocyanins was 570.10 ± 77.09 and 1278.23 ± 117.60 mg C3GE/100 g DW, respectively. Black mulberry may be a rich source of polyphenols, natural antioxidants, and effective antidiabetic substances with great potential in the food industry.


Subject(s)
Morus , Polyphenols , Polyphenols/analysis , Anthocyanins/analysis , Antioxidants/chemistry , Morus/chemistry , Phenols/analysis , Fruit/chemistry , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...