Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 419
Filter
1.
Article in English | MEDLINE | ID: mdl-38705364

ABSTRACT

OBJECTIVE: Assess near-infrared pre-irradiation effects on post-exercise lower limb muscle damage and function, determine optimal dosage. DATA SOURCE: PubMed, EMBASE, Cochrane Library, EBSCO, Web of Science, CNKI (China National Knowledge Infrastructure), and Wanfang Data were systematically searched (2009-2023). STUDY SELECTION: Incorporate randomized controlled trials of near-infrared pre-irradiation on lower limb muscles post-fatigue exercise into the meta-analysis. Out of 4550 articles screened, 21 met inclusion criteria. DATA EXTRACTION: The included studies' characteristics were independently extracted by 2 authors, with discrepancies resolved through discussion or a third author. Quality assessment utilized the Cochrane risk of bias tool and the GRADE System. DATA SYNTHESIS: In 21 studies, near-infrared pre-irradiation on lower limb muscles inhibited the decline in peak torque (SMD: 1.33, 95% CI: 1.08 to 1.59, p < 0.001, Increasing 27.97±4.87NM), reduced blood lactate (SMD: -0.2, 95% CI: -0.37 to -0.03, p = 0.272, decreasing 0.54±0.42mmol/L), decreased creatine kinase (SMD: -2.11, 95% CI: -2.57 to -1.65, p < 0.001, decreasing 160.07±27.96U/L), and reduced delayed-onset muscle soreness (SMD: -0.53, 95% CI: -0.81 to 0.24, p < 0.001). Using a 24-hour cutoff revealed two trends: treatment effectiveness depended on power and energy density, with optimal effects at 24.16 J/cm² and 275 J/cm² for energy, and 36.81 mW/cm² and 5495 mW/cm² for power. Noting that out of 21 studies, 19 are from Brazil, 1 from the U.S., and 1 from Australia and the results exhibit high heterogeneity CONCLUSION: : Although we would have preferred a more geographic dispersion of laboratories our findings indicate that near-infrared pre-irradiation mitigates peak torque decline in lower limb muscles. Influenced by energy and power density with a 24-hour threshold, optimal energy and power densities are observed at 24.16 J/cm², 275 J/cm², 36.81 mW/cm², and 5495 mW/cm² respectively. It also reduces blood lactate, CK, and DOMS.

2.
Sci Total Environ ; 935: 173286, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38772492

ABSTRACT

Nitrogen cycling in terrestrial ecosystems is critical for biodiversity, vegetation productivity and biogeochemical cycling. However, little is known about the response of functional nitrogen cycle genes to global change factors in soils under different land uses. Here, we conducted a multiple hierarchical mixed effects meta-analyses of global change factors (GCFs) including warming (W+), mean altered precipitation (MAP+/-), elevated carbon dioxide concentrations (eCO2), and nitrogen addition (N+), using 2706 observations extracted from 200 peer-reviewed publications. The results showed that GCFs had significant and different effects on soil microbial communities under different types of land use. Under different land use types, such as Wetland, Tundra, Grassland, Forest, Desert and Agriculture, the richness and diversity of soil microbial communities will change accordingly due to differences in vegetation cover, soil management practices and environmental conditions. Notably, soil bacterial diversity is positively correlated with richness, but soil fungal diversity is negatively correlated with richness, when differences are driven by GCFs. For functional genes involved in nitrification, eCO2 in agricultural soils and the interaction of N+ with other GCFs in grassland soils stimulate an increase in the abundance of the AOA-amoA gene. In agricultural soil, MAP+ increases the abundance of nifH. W+ in agricultural soils and N+ in grassland soils decreased the abundance of nifH. The abundance of the genes nirS and nirK, involved in denitrification, was mainly negatively affected by W+ and positively affected by eCO2 in agricultural soil, but negatively affected by N+ in grassland soil. This meta-analysis was important for subsequent research related to global climate change. Considering data limitations, it is recommended to conduct multiple long-term integrated observational experiments to establish a scientific basis for addressing global changes in this context.

3.
Mol Biol Evol ; 41(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38758089

ABSTRACT

Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.


Subject(s)
Chromatin , Diploidy , Evolution, Molecular , Gossypium , Polyploidy , Gossypium/genetics , Chromatin/genetics , Gene Expression Regulation, Plant , Genome, Plant , Nucleosomes/genetics , Genes, Duplicate , Promoter Regions, Genetic
4.
Microorganisms ; 12(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792792

ABSTRACT

To gain an in-depth understanding of the diversity and composition of soil Acidobacteria in five different forest types in typical temperate forest ecosystems and to explore their relationship with soil nutrients. The diversity of soil Acidobacteria was determined by high-throughput sequencing technology. Soil Acidobacteria's alpha-diversity index and soil nutrient content differed significantly among different forest types. ß-diversity and the composition of soil Acidobacteria also varied across forest types. Acidobacterial genera, such as Acidobacteria_Gp1, Acidobacteria_Gp4, and Acidobacteria_Gp17, play key roles in different forests. The RDA analyses pointed out that the soil pH, available nitrogen (AN), carbon to nitrogen (C/N) ratio, available phosphorus (AP), total carbon (TC), and total phosphorus (TP) were significant factors affecting soil Acidobacteria in different forest types. In this study, the diversity and composition of soil Acidobacteria under different forest types in a temperate forest ecosystem were analyzed, revealing the complex relationship between them and soil physicochemical properties. These findings not only enhance our understanding of soil microbial ecology but also provide important guidance for ecological conservation and restoration strategies for temperate forest ecosystems.

5.
J Appl Genet ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639843

ABSTRACT

Aberrant mRNA expression is implicated in uterine corpus endometrial carcinoma (UCEC) oncogenesis and progression. However, effective prognostic biomarkers for UCEC remain limited. We aimed to construct a reliable multi-gene risk model using gene expression profiles. Utilizing TCGA data (543 UCEC samples, 35 controls), we identified 1517 differentially acting genes. Weighted gene co-expression complex analysis (WGCCA), hub gene screening, and risk regression analysis (RRA) were employed to determine prognosis-related genes and construct the risk model. Nomograms visualized risk scores and receiver operator characteristic (ROC) curves assessed model performance. Seven novel prognosis-related hub genes (ANGPT1, ASB2, GAL, GDF7, ONECUT2, SV2B, TRPC6) were identified. The model's concordance index (C index) by multivariate Cox regression analysis was 0.79. ROC curves yielded AUCs of 0.811 (3-year) and 0.79 (5-year), demonstrating the model's efficacy in predicting UCEC survival. Our study proposes a promising seven-biomarker risk model for predicting UCEC prognosis, offering potential clinical utility.

6.
Heliyon ; 10(7): e27963, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586383

ABSTRACT

Rationale and objectives: The computed tomography (CT) score has been used to evaluate the severity of COVID-19 during the pandemic; however, most studies have overlooked the impact of infection duration on the CT score. This study aimed to determine the optimal cutoff CT score value for identifying severe/critical COVID-19 during different stages of infection and to construct corresponding predictive models using radiological characteristics and clinical factors. Materials and methods: This retrospective study collected consecutive baseline chest CT images of confirmed COVID-19 patients from a fever clinic at a tertiary referral hospital from November 28, 2022, to January 8, 2023. Cohorts were divided into three subcohorts according to the time interval from symptom onset to CT examination at the hospital: early phase (0-3 days), intermediate phase (4-7 days), and late phase (8-14 days). The binary endpoints were mild/moderate and severe/critical infection. The CT scores and qualitative CT features were manually evaluated. A logistic regression analysis was performed on the CT score as determined by a visual assessment to predict severe/critical infection. Receiver operating characteristic analysis was performed and the area under the curve (AUC) was calculated. The optimal cutoff value was determined by maximizing the Youden index in each subcohort. A radiology score and integrated models were then constructed by combining the qualitative CT features and clinical features, respectively, using multivariate logistic regression with stepwise elimination. Results: A total of 962 patients (aged, 61.7 ± 19.6 years; 490 men) were included; 179 (18.6%) were classified as severe/critical COVID-19, while 344 (35.8%) had a typical Radiological Society of North America (RSNA) COVID-19 appearance. The AUCs of the CT score models reached 0.91 (95% confidence interval (CI) 0.88-0.94), 0.82 (95% CI 0.76-0.87), and 0.83 (95% CI 0.77-0.89) during the early, intermediate, and late phases, respectively. The best cutoff values of the CT scores during each phase were 1.5, 4.5, and 5.5. The predictive accuracies associated with the time-dependent cutoff values reached 88% (vs.78%), 73% (vs. 63%), and 87% (vs. 57%), which were greater than those associated with universal cutoff value (all P < 0.001). The radiology score models reached AUCs of 0.96 (95% CI 0.94-0.98), 0.90 (95% CI 0.87-0.94), and 0.89 (95% CI 0.84-0.94) during the early, intermediate, and late phases, respectively. The integrated models including demographic and clinical risk factors greatly enhanced the AUC during the intermediate and late phases compared with the values obtained with the radiology score models; however, an improvement in accuracy was not observed. Conclusion: The time interval between symptom onset and CT examination should be tracked to determine the cutoff value for the CT score for identifying severe/critical COVID-19. The radiology score combining qualitative CT features and the CT score complements clinical factors for identifying severe/critical COVID-19 patients and facilitates timely hierarchical diagnoses and treatment.

7.
Acta Pharm Sin B ; 14(4): 1827-1844, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572103

ABSTRACT

In the treatment of central nervous system disease, the blood-brain barrier (BBB) is a major obstruction to drug delivery that must be overcome. In this study, we propose a brain-targeted delivery strategy based on selective opening of the BBB. This strategy allows some simple bare nanoparticles to enter the brain when mixed with special opening material; however, the BBB still maintains the ability to completely block molecules from passing through. Based on the screening of BBB opening and matrix delivery materials, we determined that phospholipase A2-catalyzed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine liposomes can efficiently carry drugs into the brain immediately. At an effective dose, this delivery system is safe, especially with its effect on the BBB being reversible. This mix & act delivery system has a simple structure and rapid preparation, making it a strong potential candidate for drug delivery across the BBB.

8.
Sports Health ; : 19417381241235147, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587041

ABSTRACT

CONTEXT: Nontraumatic knee conditions are common in clinical practice. Existing pharmaceutical and immobilization approaches provide limited pain relief and functional enhancement. Low-intensity bloodflow restriction training (LI-BFRT) is being investigated as a nonpharmacological alternative; however, its efficacy is uncertain. OBJECTIVE: To assess the effectiveness of LI-BFRT for nontraumatic knee conditions and compare it with high-intensity resistance training (HI-RT) and low-intensity resistance training (LI-RT). DATA SOURCES: PubMed, EBSCO, Science Direct, Cochrane Library, China Knowledge Infrastructure, Wanfang Data, and VIP databases were searched until May 30, 2023. STUDY SELECTION: Original randomized controlled trials involving nontraumatic knee joint conditions with interventions consisting mainly of LI-BFRT, HI-RT, or LI-RT. The results assessed mainly pain and muscle performance. STUDY DESIGN: Systematic review and meta-analysis. LEVEL OF EVIDENCE: Level 1. DATA EXTRACTION: Sample characteristics, study design, country, disease, groups, evaluation time, duration, and outcomes were extracted. RESULTS: A total of 13 randomized controlled trials were included in the systematic review. Compared with pretreatment, LI-BFRT significantly alleviated pain (weighted standardized mean difference [SMD], -1.33; 95% CI, -1.62 to -1.05), with better additional effects on hip muscle training (SMD, -3.14; 95% CI, -4.07 to -2.75). Compared with LI-RT, LI-BFRT significantly relieved pain in male patients (SMD, -1.47; 95% CI, -1.92 to -1.01). LI-BFRT significantly increased quadriceps cross-sectional area (SMD, 0.53; 95% CI, 0.27-0.78), knee extension strength (SMD, 0.84; 95% CI, 0.48-1.2), and leg press strength (SMD, 0.64; 95% CI, 0.34-0.94) compared with pretreatment. Its effects were superior to those of LI-RT and similar to those of HI-RT. However, sex differences in muscle strength improvement were observed. CONCLUSION: In patients with nontraumatic knee joint conditions, LI-BFRT effectively alleviated pain, increased muscle cross-sectional area, and enhanced muscle strength. LI-BFRT showed pain relief comparable with that of LI-RT while surpassing LI-RT in muscle growth and strength improvement.

9.
Geohealth ; 8(4): e2023GH000888, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38638206

ABSTRACT

The Multi-Threat Medical Countermeasure (MTMC) technique is crucial for developing common biochemical signaling pathways, molecular mediators, and cellular processes. This study revealed that the Nod-like receptor 3 (NLRP3) inflammasome pathway may be a significant contributor to the cytotoxicity induced by various organophosphorus pesticides (OPPs). The study demonstrated that exposure to six different types of OPPs (paraoxon, dichlorvos, fenthion, dipterex, dibrom, and dimethoate) led to significant cytotoxicity in BV2 cells, which was accompanied by increased expression of NLRP3 inflammasome complexes (NLRP3, ASC, Caspase-1) and downstream inflammatory cytokines (IL-1ß, IL-18), in which the order of cytotoxicity was dichlorvos > dipterex > dibrom > paraoxon > fenthion > dimethoate, based on the IC50 values of 274, 410, 551, 585, 2,158, and 1,527,566 µM, respectively. The findings suggest that targeting the NLRP3 inflammasome pathway could be a potential approach for developing broad-spectrum antitoxic drugs to combat multi-OPPs-induced toxicity. Moreover, inhibition of NLRP3 efficiently protected the cells against cytotoxicity induced by these six OPPs, and the expression of NLRP3, ASC, Caspase-1, IL-1ß, and IL-18 decreased accordingly. The order of NLRP3 affinity for OPPs was dimethoate > paraoxon > dichlorvos > dibrom > (fenthion and dipterex) based on K D values of 89.8, 325, 1,460, and 2,690 µM, respectively. Furthermore, the common molecular mechanism of NLRP3-OPPs was clarified by the presence of toxicity effector groups (benzene ring, nitrogen/oxygen-containing functional group); =O, -O-, or =S (active) groups; and combination residues (Gly271, Asp272). This finding provided valuable insights into exploring the common mechanisms of multiple threats and developing effective therapeutic strategies to prevent OPPs poisoning.

10.
Cell Mol Life Sci ; 81(1): 187, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635081

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) poses significant challenges due to limited treatment options despite its complex pathogenesis involving cellular and molecular mechanisms. This study investigated the role of transient receptor potential ankyrin 1 (TRPA1) channels in regulating M2 macrophage polarization in IPF progression, potentially offering novel therapeutic targets. Using a bleomycin-induced pulmonary fibrosis model in C57BL/6J mice, we assessed the therapeutic potential of the TRPA1 inhibitor HC-030031. TRPA1 upregulation was observed in fibrotic lungs, correlating with worsened lung function and reduced survival. TRPA1 inhibition mitigated fibrosis severity, evidenced by decreased collagen deposition and restored lung tissue stiffness. Furthermore, TRPA1 blockade reversed aberrant M2 macrophage polarization induced by bleomycin, associated with reduced Smad2 phosphorylation in the TGF-ß1-Smad2 pathway. In vitro studies with THP-1 cells treated with bleomycin and HC-030031 corroborated these findings, highlighting TRPA1's involvement in fibrotic modulation and macrophage polarization control. Overall, targeting TRPA1 channels presents promising therapeutic potential in managing pulmonary fibrosis by reducing pro-fibrotic marker expression, inhibiting M2 macrophage polarization, and diminishing collagen deposition. This study sheds light on a novel avenue for therapeutic intervention in IPF, addressing a critical need in the management of this challenging disease.


Subject(s)
Idiopathic Pulmonary Fibrosis , Macrophages , TRPA1 Cation Channel , Animals , Mice , Acetanilides , Bleomycin , Collagen , Cytoskeletal Proteins , Mice, Inbred C57BL , Purines , TRPA1 Cation Channel/metabolism
11.
Infect Drug Resist ; 17: 1099-1105, 2024.
Article in English | MEDLINE | ID: mdl-38590553

ABSTRACT

Purpose: To explore the clinical characteristics, diagnosis, and treatment of family outbreak of psittacosis and to improve the success rate of treatment. Patients and Methods: The clinical characteristics, diagnosis, treatment, and outcome of family outbreak of psittacosis, which consists three patients, diagnosed by clinical analysis and metagenomic next-generation sequencing (mNGS) in our hospital were analyzed retrospectively. Results: We report on three instances of clustered atypical pneumonia, which were caused by Chlamydia psittaci during the COVID-19 pandemic. All patients exhibited symptoms of fever and cough, while one patient also experienced gastrointestinal symptoms such as nausea, vomiting, and diarrhea. Laboratory tests indicated no significant increase in leukocytes and neutrophils, but a mild increase in C-reactive protein was observed in all three patients. Chest computed tomography (CT) scans revealed a consolidation shadow in a unilateral lung lobe in all three patients. Both patients were treated with empirical moxifloxacin, yielding unsatisfactory outcomes. mNGS was conducted on sputum samples from one adult patient, revealing the presence of Chlamydia psittaci. Additional doxycycline was prescribed immediately, and then the patients' temperatures were stabilized, and the lesion in chest CT was absorbed. The pediatric patient exhibited less severe symptoms compared to the adult patients and exhibited a favorable response to azithromycin administration. Conclusion: This study reports a cluster of a family outbreak of atypical pneumonia caused by C. psittaci in China. The occurrence of a family outbreak during the COVID-19 pandemic may be attributed to familial aggregation resulting from the epidemic. The three cases reported in this study did not experience severe complications, which can be attributed to the prompt medical intervention and swift diagnosis. This finding implies the need to enhance patients' awareness and vigilance towards their health. Additionally, mNGS emerges as a valuable technique for accurately identifying pathogens causing pulmonary infections.

12.
ESC Heart Fail ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600875

ABSTRACT

AIMS: Both hypercapnia and hypocapnia are common in patients with acute heart failure (AHF), but the association between partial pressure of arterial carbon dioxide (PaCO2) and AHF prognosis remains unclear. The objective of this study was to investigate the connection between PaCO2 within 24 h after admission to the intensive care unit (ICU) and mortality during hospitalization and at 1 year in AHF patients. METHODS AND RESULTS: AHF patients were enrolled from the Medical Information Mart for Intensive Care IV database. The patients were divided into three groups by PaCO2 values of <35, 35-45, and >45 mmHg. The primary outcome was to investigate the connection between PaCO2 and in-hospital mortality and 1 year mortality in AHF patients. The secondary outcome was to assess the prediction value of PaCO2 in predicting in-hospital mortality and 1 year mortality in AHF patients. A total of 2374 patients were included in this study, including 457 patients in the PaCO2 < 35 mmHg group, 1072 patients in the PaCO2 = 35-45 mmHg group, and 845 patients in the PaCO2 > 45 mmHg group. The in-hospital mortality was 19.5%, and the 1 year mortality was 23.9% in the PaCO2 < 35 mmHg group. Multivariate logistic regression analysis showed that the PaCO2 < 35 mmHg group was associated with an increased risk of in-hospital mortality [hazard ratio (HR) 1.398, 95% confidence interval (CI) 1.039-1.882, P = 0.027] and 1 year mortality (HR 1.327, 95% CI 1.020-1.728, P = 0.035) than the PaCO2 = 35-45 mmHg group. The PaCO2 > 45 mmHg group was associated with an increased risk of in-hospital mortality (HR 1.387, 95% CI 1.050-1.832, P = 0.021); the 1 year mortality showed no significant difference (HR 1.286, 95% CI 0.995-1.662, P = 0.055) compared with the PaCO2 = 35-45 mmHg group. The Kaplan-Meier survival curves showed that the PaCO2 < 35 mmHg group had a significantly lower 1 year survival rate. The area under the receiver operating characteristic curve for predicting in-hospital mortality was 0.591 (95% CI 0.526-0.656), and the 1 year mortality was 0.566 (95% CI 0.505-0.627) in the PaCO2 < 35 mmHg group. CONCLUSIONS: In AHF patients, hypocapnia within 24 h after admission to the ICU was associated with increased in-hospital mortality and 1 year mortality. However, the increase in 1 year mortality may be influenced by hospitalization mortality. Hypercapnia was associated with increased in-hospital mortality.

13.
Adv Sci (Weinh) ; : e2400426, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666466

ABSTRACT

Adaptive metabolic responses and innate metabolites hold promising therapeutic potential for stroke, while targeted interventions require a thorough understanding of underlying mechanisms. Adiposity is a noted modifiable metabolic risk factor for stroke, and recent research suggests that it benefits neurological rehabilitation. During the early phase of experimental stroke, the lipidomic results showed that fat depots underwent pronounced lipolysis and released fatty acids (FAs) that feed into consequent hepatic FA oxidation and ketogenesis. Systemic supplementation with the predominant ketone beta-hydroxybutyrate (BHB) is found to exert discernible effects on preserving blood-brain barrier (BBB) integrity and facilitating neuroinflammation resolution. Meanwhile, blocking FAO-ketogenesis processes by administration of CPT1α antagonist or shRNA targeting HMGCS2 exacerbated endothelial damage and aggravated stroke severity, whereas BHB supplementation blunted these injuries. Mechanistically, it is unveiled that BHB infusion is taken up by monocarboxylic acid transporter 1 (MCT1) specifically expressed in cerebral endothelium and upregulated the expression of tight junction protein ZO-1 by enhancing local ß-hydroxybutyrylation of H3K9 at the promoter of TJP1 gene. Conclusively, an adaptive metabolic mechanism is elucidated by which acute lipolysis stimulates FAO-ketogenesis processes to restore BBB integrity after stroke. Ketogenesis functions as an early metabolic responder to restrain stroke progression, providing novel prospectives for clinical translation.

14.
Medicine (Baltimore) ; 103(17): e37866, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669430

ABSTRACT

To investigate the value of preoperative ultrasound combined with 99mTc-MIBI imaging for the diagnosis of ectopic intrathyroid parathyroid gland (ETPG) in patients with secondary hyperparathyroidism (SHPT). One hundred and eleven patients with SHPT who underwent total parathyroidectomy plus forearm transplantation from January 2015 to January 2022 in the Third Hospital of Hebei Medical University were selected. All patients underwent routine preoperative ultrasonography and 99mTc-MIBI imaging, and with pathological diagnosis as the gold standard, the clinical data of ETPG patients were selected, including clinical manifestations, laboratory tests, preoperative ultrasonography and 99mTc-MIBI imaging for localization and diagnosis, intraoperative exploration and postoperative pathology, and postoperative follow-up. To analyze the ultrasound manifestations of preoperative parathyroid hyperplasia and the results of 99mTc-MIBI imaging in patients with ETPG. Among 111 patients with SHPT, there were 5 patients with ETPG, 1 male and 4 females with a mean age of (45.00 ±â€…5.05) years, and 6 ectopic parathyroid glands were located in the thyroid gland. The incidence of ETPG was 4.5% (5/111), 4 were detected by ultrasound, 2 were not detected with a diagnostic accuracy of 66.7% (4/6), 3 were positive for 99mTc-MIBI imaging, 3 were negative with a diagnostic accuracy of 50.0% (3/6). Among them, one was not detected by ultrasound, but was positive for 99mTc-MIBI imaging, 2 with negative 99mTc-MIBI imaging, but all were detected by ultrasound, and one with negative 99mTc-MIBI imaging was detected by ultrasound but misdiagnosed as a thyroid nodule. A total of 5 ETPGs were detected by ultrasound combined with 99mTc-MIBI imaging, with a diagnostic accuracy of 83.3% (5/6). Patients' postoperative serum calcium and serum parathyroid hormone (PTH) levels were normalized or significantly decreased from preoperative levels. Ultrasound combined with 99mTc-MIBI imaging can achieve higher accuracy than either examination alone in the preoperative localization and diagnosis of ETPG in SHPT patients.


Subject(s)
Choristoma , Hyperparathyroidism, Secondary , Parathyroid Glands , Technetium Tc 99m Sestamibi , Thyroid Gland , Ultrasonography , Humans , Male , Female , Hyperparathyroidism, Secondary/diagnostic imaging , Hyperparathyroidism, Secondary/surgery , Middle Aged , Parathyroid Glands/diagnostic imaging , Parathyroid Glands/surgery , Ultrasonography/methods , Adult , Choristoma/diagnostic imaging , Choristoma/complications , Thyroid Gland/diagnostic imaging , Thyroid Gland/surgery , Radiopharmaceuticals , Radionuclide Imaging/methods , Parathyroidectomy/methods
15.
Microorganisms ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674724

ABSTRACT

In recent years, the Sanjiang Plain has experienced drastic human activities, which have dramatically changed its ecological environment. Soil microorganisms can sensitively respond to changes in soil quality as well as ecosystem function. In this study, we investigated the changes in soil microbial community diversity and composition of three typical land use types (forest, wetland and cropland) in the Sanjiang Plain using phospholipid fatty acid analysis (PLFA) technology, and 114 different PLFA compounds were identified. The results showed that the soil physicochemical properties changed significantly (p < 0.05) among the different land use types; the microbial diversity and abundance in cropland soil were lower than those of the other two land use types. Soil pH, soil water content, total organic carbon and available nitrogen were the main soil physico-chemical properties driving the composition of the soil microbial community. Our results indicate that the soil microbial community response to the three different habitats is complex, and provide ideas for the mechanism by which land use changes in the Sanjiang Plain affect the structure of soil microbial communities, as well as a theoretical basis for the future management and sustainable use of the Sanjiang plain, in the northeast of China.

16.
Cell Biol Toxicol ; 40(1): 24, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653919

ABSTRACT

Elongin B (ELOB), a pivotal element in the ELOB/c-Cullin2/5-SOCS-box E3 ubiquitin-protein ligase complex, plays a significant role in catalyzing the ubiquitination and subsequent degradation of a broad spectrum of target proteins. Notably, it is documented to facilitate these processes. However, the regulatory role of ELOB in breast cancer remains ambiguous. In this study, through bio-informatic analysis of The Cancer Genome Atlas and Fudan University Shanghai Cancer Center database, we demonstrated that ELOB was over-expressed in breast cancer tissues and was related to unfavorable prognosis. Additionally, pathway enrichment analysis illustrated that high expression of ELOB was associated with multiple cancer promoting pathways, like cell cycle, DNA replication, proteasome and PI3K - Akt signaling pathway, indicating ELOB as a potential anticancer target. Then, we confirmed that both in vivo and in vitro, the proliferation of breast cancer cells could be significantly suppressed by the down-regulation of ELOB. Mechanically, immunoprecipitation and in vivo ubiquitination assays prompted that, as the core element of Cullin2-RBX1-ELOB E3 ligase (CRL2) complex, ELOB regulated the ubiquitination and the subsequent degradation of oncoprotein p14/ARF. Moreover, the anticancer efficacy of erasing ELOB could be rescued by simultaneous knockdown of p14/ARF. Finally, through analyzing breast cancer tissue microarrays and western blot of patient samples, we demonstrated that the expression of ELOB in tumor tissues was elevated in compared to adjacent normal tissues. In conclusion, ELOB is identified to be a promising innovative target for the drug development of breast cancer by promoting the ubiquitination and degradation of oncoprotein p14/ARF.


Subject(s)
Breast Neoplasms , Cell Proliferation , Elongin , Ubiquitination , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Elongin/metabolism , Elongin/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Mice, Nude , Mice , Gene Expression Regulation, Neoplastic , Signal Transduction , Mice, Inbred BALB C , MCF-7 Cells , Transcription Factors/metabolism , Transcription Factors/genetics
17.
J Cancer Res Clin Oncol ; 150(4): 176, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575793

ABSTRACT

PURPOSE: Residual lymph node metastases (RLNM) remained a great concern in the implementation of organ-preserving strategies and led to poor prognosis in locally advanced rectal cancer (LARC). In this study, we aimed to identify the clinicopathological factors correlated with RLNM in LARC patients with ypT0-2 after neoadjuvant chemoradiotherapy (NCRT). METHODS: We retrospectively analyzed 417 patients histologically diagnosed middle-low LARC after NCRT and total mesorectal excision (TME), whose pathological staging was ypT0-2. All patients received pelvic magnetic resonance imaging (MRI) before NCRT. The radiation doses were 50-50.6 Gy for the planning gross tumor volume and 41.8-45 Gy for the planning target volume, respectively. A nomogram for predicting RLNM was constructed using a binary logistic regression. Nomogram performance was assessed by receiver operating characteristic (ROC) curve, calibration curve, decision curve analysis (DCA) and clinical impact curve (CIC). RESULTS: After surgery, 191 patients (45.8%) were ypT0, 43 patients (10.3%) were ypT1 and 183 patients (43.9%) were ypT2, and a total of 49 patients (11.8%) were found the presence of RLNM. Multivariable analyses identified MRI-defined mesorectal fascia (MRF)-positive, high-grade histopathology at biopsy, advanced ypT-category, and the presence of perineural invasion (PNI) as the predictive factors. The nomogram, incorporating all these predictors, showed good discrimination and calibration efficacy, with the areas under the ROC curve of 0.690 (95% CI: 0.610-0.771). Both DCA and CIC demonstrated that this nomogram has good clinical usefulness. CONCLUSION: The nomogram model can predict RLNM in patients with ypT0-2 tumors. It can help select suitable patients for performing organ-preserving strategies after NCRT.


Subject(s)
Neoplasms, Second Primary , Rectal Neoplasms , Humans , Neoadjuvant Therapy , Lymphatic Metastasis , Retrospective Studies , Neoplasm Staging , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Chemoradiotherapy , Chemoradiotherapy, Adjuvant , Neoplasms, Second Primary/pathology
18.
Acad Radiol ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614826

ABSTRACT

RATIONALE AND OBJECTIVES: To systematically evaluate the application value of radiomics and deep learning (DL) in the differential diagnosis of benign and malignant soft tissue tumors (STTs). MATERIALS AND METHODS: A systematic review was conducted on studies published up to December 11, 2023, that utilized radiomics and DL methods for the diagnosis of STTs. The methodological quality and risk of bias were evaluated using the Radiomics Quality Score (RQS) 2.0 system and Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool, respectively. A bivariate random-effects model was used to calculate the summarized sensitivity and specificity. To identify factors contributing to heterogeneity, meta-regression and subgroup analyses were performed to assess the following covariates: diagnostic modality, region/volume of interest, imaging examination, study design, and pathology type. The asymmetry of Deeks' funnel plot was used to assess publication bias. RESULTS: A total of 21 studies involving 3866 patients were included, with 13 studies using independent test/validation sets included in the quantitative statistical analysis. The average RQS was 21.31, with substantial or near-perfect inter-rater agreement. The combined sensitivity and specificity were 0.84 (95% CI: 0.76-0.89) and 0.88 (95% CI: 0.69-0.96), respectively. Meta-regression and subgroup analyses showed that study design and the region/volume of interest were significant factors affecting study heterogeneity (P < 0.05). No publication bias was observed. CONCLUSION: Radiomics and DL can accurately distinguish between benign and malignant STTs. Future research should concentrate on enhancing the rigor of study designs, conducting multicenter prospective validations, amplifying the interpretability of DL models, and integrating multimodal data to elevate the diagnostic accuracy and clinical utility of soft tissue tumor assessments.

19.
Food Chem X ; 22: 101289, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38544933

ABSTRACT

Oligosaccharides are low-molecular-weight carbohydrates between monosaccharides and polysaccharides. They can be extracted directly from natural products by physicochemical methods or obtained by chemical synthesis or enzymatic reaction. Oligosaccharides have important physicochemical and physiological properties. Their research and production involve many disciplines such as medicine, chemical industry, and biology. Functional oligosaccharides, as an excellent functional food base, can be used as dietary fibrer and prebiotics to enrich the diet; improve the microecology of the gut; exert antitumour, anti-inflammatory, antioxidant, and lipid-lowering properties. Therefore, the industrial applications of oligosaccharides have increased rapidly in the past few years. It has great prospects in the field of food and medicinal chemistry. This review summarized the preparation, structural features and biological activities of oligosaccharides, with particular emphasis on the application of functional oligosaccharides in the food industry and human nutritional health. It aims to inform further research and development of oligosaccharides and food chemistry.

20.
Clin Oral Investig ; 28(4): 219, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492123

ABSTRACT

OBJECTIVES: This study aimed to investigate the regulatory roles of lncRNA MALAT1, miR-124-3p, and IGF2BP1 in osteogenic differentiation of periodontal ligament stem cells (PDLSCs). MATERIALS AND METHODS: We characterized PDLSCs by employing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses to evaluate the expression of key osteogenic markers including ALPL, SPP1, and RUNX2. Manipulation of lncRNA MALAT1 and miR-124-3p expression levels was achieved through transfection techniques. In addition, early osteogenic differentiation was assessed via Alkaline phosphatase (ALP) staining, and mineral deposition was quantified using Alizarin Red S (ARS) staining. Cellular localization of lncRNA MALAT1 was determined through Fluorescence In Situ Hybridization (FISH). To elucidate the intricate regulatory network, we conducted dual-luciferase reporter assays to decipher the binding interactions between lncRNA MALAT1 and miR-124-3P as well as between miR-124-3P and IGF2BP1. RESULTS: Overexpression of lncRNA MALAT1 robustly promoted osteogenesis in PDLSCs, while its knockdown significantly inhibited the process. We confirmed the direct interaction between miR-124-3p and lncRNA MALAT1, underscoring its role in impeding osteogenic differentiation. Notably, IGF2BP1 was identified as a direct binding partner of lncRNA MALAT1, highlighting its pivotal role within this intricate network. Moreover, we determined the optimal IGF2BP1 concentration (50 ng/ml) as a potent enhancer of osteogenesis, effectively countering the inhibition induced by si-MALAT1. Furthermore, in vivo experiments utilizing rat calvarial defects provided compelling evidence, solidifying lncRNA MALAT1's crucial role in bone formation. CONCLUSIONS: Our study reveals the regulatory network involving lncRNA MALAT1, miR-124-3p, and IGF2BP1 in PDLSCs' osteogenic differentiation. CLINICAL RELEVANCE: These findings enhance our understanding of lncRNA-mediated osteogenesis, offering potential therapeutic implications for periodontal tissue regeneration and the treatment of bone defects.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Rats , Animals , Osteogenesis/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Periodontal Ligament , In Situ Hybridization, Fluorescence , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Differentiation/genetics , Stem Cells , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...