Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 11(1): e0107922, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36656008

ABSTRACT

Bradyrhizobium arachidis strain CCBAU 051107 could differentiate into swollen and nonswollen bacteroids in determinate root nodules of peanut (Arachis hypogaea) and indeterminate nodules of Sophora flavescens, respectively, with different N2 fixation efficiencies. To reveal the mechanism of bacteroid differentiation and symbiosis efficiency in association with different hosts, morphologies, transcriptomes, and nitrogen fixation efficiencies of the root nodules induced by strain CCBAU 051107 on these two plants were compared. Our results indicated that the nitrogenase activity of peanut nodules was 3 times higher than that of S. flavescens nodules, demonstrating the effects of rhizobium-host interaction on symbiotic effectiveness. With transcriptome comparisons, genes involved in biological nitrogen fixation (BNF) and energy metabolism were upregulated, while those involved in DNA replication, bacterial chemotaxis, and flagellar assembly were significantly downregulated in both types of bacteroids compared with those in free-living cells. However, expression levels of genes involved in BNF, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, hydrogenase synthesis, poly-ß-hydroxybutyrate (PHB) degradation, and peptidoglycan biosynthesis were significantly greater in the swollen bacteroids of peanut than those in the nonswollen bacteroids of S. flavescens, while contrasting situations were found in expression of genes involved in urea degradation, PHB synthesis, and nitrogen assimilation. Especially higher expression of ureABEF and aspB genes in bacteroids of S. flavescens might imply that the BNF product and nitrogen transport pathway were different from those in peanut. Our study revealed the first differences in bacteroid differentiation and metabolism of these two hosts and will be helpful for us to explore higher-efficiency symbiosis between rhizobia and legumes. IMPORTANCE Rhizobial differentiation into bacteroids in leguminous nodules attracts scientists to investigate its different aspects. The development of bacteroids in the nodule of the important oil crop peanut was first investigated and compared to the status in the nodule of the extremely promiscuous medicinal legume Sophora flavescens by using just a single rhizobial strain of Bradyrhizobium arachidis, CCBAU 051107. This strain differentiates into swollen bacteroids in peanut nodules and nonswollen bacteroids in S. flavescens nodules. The N2-fixing efficiency of the peanut nodules is three times higher than that of S. flavescens. By comparing the transcriptomes of their bacteroids, we found that they have similar gene expression spectra, such as nitrogen fixation and motivity, but different spectra in terms of urease activity and peptidoglycan biosynthesis. Those altered levels of gene expression might be related to their functions and differentiation in respective nodules. Our studies provided novel insight into the rhizobial differentiation and metabolic alteration in different hosts.


Subject(s)
Fabaceae , Fabaceae/microbiology , Arachis , Transcriptome , Sophora flavescens , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Symbiosis , Nitrogen/metabolism , Peptidoglycan/metabolism
2.
Microbiol Spectr ; 11(1): e0209622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36475917

ABSTRACT

Bradyrhizobium guangxiense CCBAU53363 efficiently nodulates peanut but exhibits incompatible interaction with mung bean. By comparing the common nod region with those of other peanut bradyrhizobia efficiently nodulating these two hosts, distinctive characteristics with a single nodD isoform (nodD1) and a truncated nolA were identified. However, the regulatory roles of NodD1 and NolA and their coordination in legume-bradyrhizobial interactions remain largely unknown in terms of explaining the contrasting symbiotic compatibility. Here, we report that nolA was important for CCBAU53363 symbiosis with peanut but restricted nodulation on mung bean, while nodD1 was dispensable for CCBAU53363 symbiosis with peanut but essential for nodulation on mung bean. Moreover, nolA exerted a cumulative contribution with nodD1 to efficient symbiosis with peanut. Additionally, mutants lacking nolA delayed nodulation on peanut, and both nolA and nodD1 were required for competitive nodule colonization. It is noteworth that most of the nodulation genes and type III secretion system (T3SS)-related genes were significantly downregulated in a strain 53ΔnodD1nolA mutant compared to wild-type strain CCBAU53363, and the downregulated nodulation genes also had a greater impact than T3SS-related genes on the symbiotic defect of 53ΔnodD1nolA on peanut, which was supported by a more severe symbiotic defect induced by 53ΔnodC than that with the 53ΔnodD1nopP, 53ΔnodD1rhcJ, and 53ΔnodD1ttsI mutants. NolA did not regulate nod gene expression but did regulate the T3SS effector gene nopP in an indirect way. Meanwhile, nolA, nodW, and some T3SS-related genes besides nopP were also demonstrated as new "repressors" that seriously impaired CCBAU53363 symbiosis with mung bean. Taken together, the roles and essentiality of nolA and nodD1 in modulating symbiotic compatibility are sophisticated and host dependent. IMPORTANCE The main findings of this study were that we clarified that the roles and essentiality of nodD1 and nolA are host dependent. Importantly, for the first time, NolA was found to positively regulate T3SS effector gene nopP to mediate incompatibility on mung bean. Additionally, NolA does not regulate nod genes, which are activated by NodD1. nolA exerts a cumulative effect with nodD1 on CCBAU53363 symbiosis with peanut. These findings shed new light on our understanding of coordinated regulation of NodD1 and NolA in peanut bradyrhizobia with different hosts.


Subject(s)
Fabaceae , Vigna , Arachis/metabolism , Symbiosis , Bacterial Proteins/genetics
3.
Microbiol Res ; 265: 127188, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36152611

ABSTRACT

Type I peanut bradyrhizobial strains can establish efficient symbiosis in contrast to symbiotic incompatibility induced by type II strains with mung bean. The notable distinction in the two kinds of key symbiosis-related regulators nolA and nodD close to the nodABCSUIJ operon region between these two types of peanut bradyrhizobia was found. Therefore, we determined whether NolA and NodD proteins regulate the symbiotic adaptations of type I strains to different hosts. We found that NodD1-NolA synergistically regulated the symbiosis between the type I strain Bradyrhizobium zhanjiangense CCBAU51778 and mung bean, and NodD1-NodD2 jointly regulated nodulation ability. In contrast, NodD1-NolA coordinately regulated nodulation ability in the CCBAU51778-peanut symbiosis. Meanwhile, NodD1 and NolA collectively contributes to competitive nodule colonization of CCBAU51778 on both hosts. The Fucosylated Nod factors and intact type 3 secretion system (T3SS), rather than extra nodD2 and full-length nolA, were critical for effective symbiosis with mung bean. Unexpectedly, T3SS-related genes were activated by NodD2 but not NodD1. Compared to NodD1 and NodD2, NolA predominantly inhibits exopolysaccharide production by promoting exoR expression. Importantly, this is the first report that NolA regulates rhizobial T3SS-related genes. The coordinated regulation and integration of different gene networks to fine-tune the expression of symbiosis-related genes and other accessory genes by NodD1-NolA might be required for CCBAU51778 to efficiently nodulate peanut. This study shed new light on our understanding of the regulatory roles of NolA and NodD proteins in symbiotic adaptation, highlighting the sophisticated gene networks dominated by NodD1-NolA.


Subject(s)
Bradyrhizobium , Fabaceae , Arachis/genetics , Arachis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial , Symbiosis/genetics , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
5.
Front Microbiol ; 11: 1175, 2020.
Article in English | MEDLINE | ID: mdl-32655513

ABSTRACT

Rhizobia are capable of establishing compatible symbiosis with their hosts of origin and plants in the cross-nodulation group that the hosts of origin belonged to. However, different from the normal peanut Bradyrhizobium (Type I strains), the Type II strains showed incompatible symbiosis with Vigna radiata. Here, we employed transposon mutagenesis to identify the genetic loci related to this incompatibility in Type II strain CCBAU 53363. As results, seven Tn5 transposon insertion mutants resulted in an increase in nodule number on V. radiata. By sequencing analysis of the sequence flanking Tn5 insertion, six mutants were located in the chromosome of CCBAU 53363, respectively encoding acyltransferase (L265) and hypothetical protein (L615)-unique to CCBAU 53363, two hypothetical proteins (L4 and L82), tripartite tricarboxylate transporter substrate binding protein (L373), and sulfur oxidation c-type cytochrome SoxA (L646), while one mutant was in symbiotic plasmid encoding alanine dehydrogenase (L147). Significant differences were observed in L147 gene sequences and the deduced protein 3D structures between the Type II (in symbiotic plasmid) and Type I strains (in chromosome). Conversely, strains in both types shared high homologies in the chromosome genes L373 and L646 and in their protein 3D structures. These data indicated that the symbiotic plasmid gene in Type II strains might have directly affected their symbiosis incompatibility, whereas the chromosome genes might be indirectly involved in this process by regulating the plasmid symbiosis genes. The seven genes may initially explain the complication associated with symbiotic incompatibility.

6.
Ying Yong Sheng Tai Xue Bao ; 31(8): 2759-2766, 2020 Aug.
Article in Chinese | MEDLINE | ID: mdl-34494799

ABSTRACT

The application of microbial fertilizer plays an important role in improving soil restoration and fertilizer utilization. The effects of microbial fertilizer are greatly affected by crop genotypes and ecological conditions. Little is known about the effects of microbial fertilizers on maize production in Northeast China. To develop microbial fertilizer specific to the black soil and the climate characteristics of Northeast China, we isolated five plant rhizosphere-promoting bacteria (PGPR), named as MZ1, MZ2, MZ3, MZ4 and MZ5, with different degrees of biological functions such as IAA synthesis, phosphate-solubilizing, potassium-solubilizing and siderophore-releasing, from the rhizosphere of maize field. The analysis of ecological adaptability showed that those five strains differed in salt resistance, drought tolerance, acid and alkali resistance, pesticide resistance. The 16S rRNA gene sequences analysis showed that the strains MZ1, MZ2, MZ3, MZ4 and MZ5 belonged to the genus of Sphingomonas, Enterobacter, Pseudomonas, Bacillus and Rhizobium, respectively. In maize field experiment with 50% nitrogen fertilizer reduction, the inoculation with MZ1, MZ3 and MZ5 increased grain yield by 19.9%-25.0%. MZ1, MZ3, and MZ5 could be used as microbial fertilizers for maize in Northeast China.


Subject(s)
Rhizosphere , Zea mays , Bacteria/genetics , China , Fertilizers , RNA, Ribosomal, 16S , Soil , Soil Microbiology
7.
Syst Appl Microbiol ; 42(5): 126002, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31362902

ABSTRACT

Nine slow-growing rhizobia isolated from effective nodules on peanut (Arachis hypogaea) were characterized to clarify the taxonomic status using a polyphasic approach. They were assigned to the genus Bradyrhizobium on the basis of 16S rRNA sequences. MLSA of concatenated glnII-recA-dnaK genes classified them into three species represented by CCBAU 53390T, CCBAU 51670T and CCBAU 51778T, which presented the closest similarity to B. guangxiense CCBAU 53363T, B. guangdongense CCBAU 51649T and B. manausense BR 3351T, B. vignae 7-2T and B. forestalis INPA 54BT, respectively. The dDDH (digital DNA-DNA hybridization) and ANI (Average Nucleotide Identity) between the genomes of the three representative strains and type strains for the closest Bradyrhizobium species were less than 42.1% and 91.98%, respectively, below the threshold of species circumscription. Effective nodules could be induced on peanut and Lablab purpureus by all representative strains, while Vigna radiata formed effective nodules only with CCBAU 53390T and CCBAU 51778T. Phenotypic characteristics including sole carbon sources and growth features supported the phylogenetic results. Based on the genotypic and phenotypic features, strains CCBAU 53390T, CCBAU 51670T and CCBAU 51778T are designated the type strains of three novel species, for which the names Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov. are proposed, respectively.


Subject(s)
Arachis/microbiology , Bradyrhizobium/classification , Phylogeny , Root Nodules, Plant/microbiology , Anti-Bacterial Agents/pharmacology , Bradyrhizobium/genetics , Bradyrhizobium/growth & development , Carbon/metabolism , China , Fatty Acids/analysis , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Host Specificity , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity , Symbiosis
8.
Mol Plant Microbe Interact ; 31(10): 1060-1068, 2018 10.
Article in English | MEDLINE | ID: mdl-29663866

ABSTRACT

Phosphate homeostasis is tightly modulated in all organisms, including bacteria, which harbor both high- and low-affinity transporters acting under conditions of fluctuating phosphate levels. It was thought that nitrogen-fixing rhizobia, named bacteroids, inhabiting root nodules of legumes are not phosphate limited. Here, we show that the high-affinity phosphate transporter PstSCAB, rather than the low-affinity phosphate transporter Pit, is essential for effective nitrogen fixation of Sinorhizobium fredii in soybean nodules. Symbiotic and growth defects of the pst mutant can be effectively restored by knocking out PhoB, the transcriptional repressor of pit. The pst homologs of representative rhizobia were actively transcribed in bacteroids without terminal differentiation in nodules of diverse legumes (soybean, pigeonpea, cowpea, common bean, and Sophora flavescens) but exhibited a basal expression level in terminally differentiated bacteroids (alfalfa, pea, and peanut). Rhizobium leguminosarum bv. viciae Rlv3841 undergoes characteristic nonterminal and terminal differentiations in nodules of S. flavescens and pea, respectively. The pst mutant of Rlv3841 showed impaired adaptation to the nodule environment of S. flavescens but was indistinguishable from the wild-type strain in pea nodules. Taken together, root nodule rhizobia can be either phosphate limited or nonlimited regarding the rhizobial differentiation fate, which is a host-dependent feature.


Subject(s)
Fabaceae/microbiology , Phosphates/administration & dosage , Root Nodules, Plant/microbiology , Root Nodules, Plant/physiology , Sinorhizobium fredii/drug effects , Gene Deletion , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Bacterial/physiology , Plant Root Nodulation , Root Nodules, Plant/ultrastructure , Sinorhizobium fredii/physiology
9.
Syst Appl Microbiol ; 40(3): 144-149, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28209394

ABSTRACT

Two bacterial strains isolated from root nodules of soybean were characterized phylogenetically as members of a distinct group in the genus Ensifer based on 16S rRNA gene comparisons. They were also verified as a separated group by the concatenated sequence analyses of recA, atpD and glnII (with similarities ≤93.9% to the type strains for defined species), and by the average nucleotide identities (ANI) between the whole genome sequence of the representative strain CCBAU 251167T and those of the closely related strains in Ensifer glycinis and Ensifer fredii (90.5% and 90.3%, respectively). Phylogeny of symbiotic genes (nodC and nifH) grouped these two strains together with some soybean-nodulating strains of E. fredii, E. glycinis and Ensifer sojae. Nodulation tests indicated that the representative strain CCBAU 251167T could form root nodules with capability of nitrogen fixing on its host plant and Glycine soja, Cajanus cajan, Vigna unguiculata, Phaseolus vulgaris and Astragalus membranaceus, and it formed ineffective nodules on Leucaena leucocephala. Strain CCBAU 251167T contained fatty acids 18:1 ω9c, 18:0 iso and 20:0, differing from other related strains. Utilization of l-threonine and d-serine as carbon source, growth at pH 6.0 and intolerance of 1% (w/v) NaCl distinguished strain CCBAU 251167T from other type strains of the related species. The genome size of CCBAU 251167T was 6.2Mbp, comprising 7,581 predicted genes with DNA G+C content of 59.9mol% and 970 unique genes. Therefore, a novel species, Ensifer shofinae sp. nov., is proposed, with CCBAU 251167T (=ACCC 19939T=LMG 29645T) as type strain.


Subject(s)
Alphaproteobacteria/classification , Glycine max/microbiology , Rhizobium/classification , Root Nodules, Plant/microbiology , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Genes, Bacterial , Genome, Bacterial , Multilocus Sequence Typing , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizobium/isolation & purification , Sequence Analysis, DNA , Symbiosis
10.
Int J Syst Evol Microbiol ; 66(8): 2910-2916, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27125987

ABSTRACT

Rhizobial strains from root nodules of Astragalus mongholicus and soybean (Glycine max) were characterized phylogenetically as members of the genus Ensifer (formerly named Sinorhizobium), based on 16S rRNA gene sequence comparisons. Results based upon concatenated sequence analysis of three housekeeping genes (recA, atpD and glnII, ≤ 93.8 % similarities to known species) and average nucleotide identity (ANI) values of whole genome sequence comparisons (ranging from 89.6 % to 83.4 % to Ensifer fredii and Ensifer saheli, respectively) indicated the distinct positions of these novel strains within the genus Ensifer. Phylogeny of symbiotic genes (nodC and nifH) of three novel strains clustered them with rhizobial species Ensifer fredii and Ensifer sojae, both isolated from nodules of Glycine max. Cross-nodulation tests showed that the representative strain CCBAU 23380T could form root nodules with nitrogen fixation capability on Glycine soja, Albizia julibrissin, Vigna unguiculata and Cajanus cajan, but failed to nodulate Astragalus mongholicus, its original host legume. Strain CCBAU 23380T formed inefficient nodules on G. max, and it did not contain 18 : 0, 18 : 1ω7c 11-methyl or summed feature 1 fatty acids, which differed from other related strains. Failure to utilize malonic acid as a carbon source distinguished strain CCBAU 23380T from the type strains of related species. The genome size of CCBAU 23380T was 6.0 Mbp, comprising 5624 predicted genes with DNA G+C content of 62.4 mol%. Based on the results above, a novel species, Ensifer glycinis sp. nov., is proposed, with CCBAU 23380T (=LMG 29231T =HAMBI 3645T) as the type strain.


Subject(s)
Glycine max/microbiology , Phylogeny , Rhizobiaceae/classification , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fabaceae/microbiology , Fatty Acids/chemistry , Genes, Bacterial , Nitrogen Fixation , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification , Sequence Analysis, DNA , Symbiosis
11.
Arch Microbiol ; 197(10): 1151-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26429721

ABSTRACT

A Gram-positive, aerobic, nonmotile strain, NM2E3(T) was identified as Brevibacterium based on the 16S rRNA gene sequence analysis and had the highest similarities to Brevibacterium jeotgali SJ5-8(T) (97.3 %). This novel bacterium was isolated from root tissue of Prosopis laegivata grown at the edge of a mine tailing in San Luis Potosí, Mexico. Its cells were non-spore-forming rods, showing catalase and oxidase activities and were able to grow in LB medium added with 40 mM Cu(2+), 72 mM As(5+) and various other toxic elements. Anteiso-C15:0 (41.6 %), anteiso-C17:0 (30 %) and iso-C15:0 (9.5 %) were the major fatty acids. MK-8(H2) (88.4 %) and MK-7(H2) (11.6 %) were the major menaquinones. The DNA G + C content of the strain NM2E3(T) was 70.8 mol % (Tm). DNA-DNA hybridization showed that the strain NM2E3(T) had 39.8, 21.7 and 20.3 % relatedness with B. yomogidense JCM 17779(T), B. jeotgali JCM 18571(T) and B. salitolerans TRM 45(T), respectively. Based on the phenotypic and genotypic analyses, the strain NM2E3(T) (=CCBAU 101093(T) = HAMBI 3627(T) = LMG 8673(T)) is reported as a novel species of the genus Brevibacterium, for which the name Brevibacterium metallicus sp. nov., is proposed.


Subject(s)
Brevibacterium/isolation & purification , Brevibacterium/metabolism , Metals, Heavy/metabolism , Plant Roots/microbiology , Prosopis/microbiology , Symbiosis/physiology , Bacterial Typing Techniques , Base Composition/genetics , Brevibacterium/classification , Brevibacterium/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Mexico , Mining , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analysis
12.
Int J Syst Evol Microbiol ; 65(12): 4655-4661, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26409482

ABSTRACT

Seven slow-growing rhizobia isolated from effective nodules of Arachis hypogaea were assigned to the genus Bradyrhizobium based on sharing 96.3-99.9 % 16S rRNA gene sequence similarity with the type strains of recognized Bradyrhizobium species. Multilocus sequence analysis of glnII, recA, gyrB and dnaK genes indicated that the seven strains belonged to two novel species represented by CCBAU 51649T and CCBAU 53363T. Strain CCBAU 51649T shared 94, 93.4, 92.3 and 94.9 % and CCBAU 53363T shared 91.4, 94.5, 94.6 and 97.7 % sequence similarity for the glnII, recA, gyrB and dnaK genes, respectively, with respect to the closest related species Bradyrhizobium manausense BR 3351T and Bradyrhizobium yuanmingense CCBAU 10071T. Summed feature 8 and C16 : 0 were the predominant fatty acid components for strains CCBAU 51649T and CCBAU 53363T. DNA-DNA hybridization and analysis of phenotypic characteristics also distinguished these strains from the closest related Bradyrhizobium species. The strains formed effective nodules on Arachis hypogaea, Lablab purpureus and Aeschynomene indica, and they had identical nodA genes to Bradyrhizobium sp. PI237 but were phylogenetically divergent from other available nodA genes at less than 66 % similarity. Based in these results, strains CCBAU 51649T ( = CGMCC 1.15034T = LMG 28620T) and CCBAU 53363T ( = CGMCC 1.15035T = LMG 28621T) are designated the type strains of two novel species, for which the names Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov. are proposed, respectively.


Subject(s)
Arachis/microbiology , Bradyrhizobium/classification , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Multilocus Sequence Typing , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
Int J Syst Evol Microbiol ; 65(10): 3558-3563, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26296667

ABSTRACT

Three novel strains, RITF741T, RITF1220 and RITF909, isolated from root nodules of Acacia melanoxylon in Guangdong Province of China, have been previously identified as members of the genus Mesorhizobium, displaying the same 16S rRNA gene RFLP pattern. Phylogenetic analysis of 16S rRNA gene sequences indicated that the three strains belong to the genus Mesorhizobium and had highest similarity (100.0 %) to Mesorhizobium plurifarium LMG 11892T. Phylogenetic analyses of housekeeping genes recA, atpD and glnII revealed that these strains represented a distinct evolutionary lineage within the genus Mesorhizobium. Strain RITF741T showed >73 % DNA­DNA relatedness with strains RITF1220 and RITF909, but < 60 % DNA­DNA relatedness with the closest type strains of recognized species of the genus Mesorhizobium. They differed from each other and from their closest phylogenetic neighbours by presence/absence of several fatty acids, or by large differences in the relative amounts of particular fatty acids. While showing distinctive features, they were generally able to utilize a wide range of substrates as sole carbon sources based on API 50CH and API 20NE tests. The three strains were able to form nodules with the original host Acacia melanoxylon and other woody legumes such as Acacia aneura, Albizia falcataria and Leucaena leucocephala. In conclusion, these strains represent a novel species belonging to the genus Mesorhizobium based on the data obtained in the present and previous studies, for which the name Mesorhizobium acaciae sp. nov. is proposed. The type strain is RITF741T ( = CCBAU 101090T = JCM 30534T), the DNA G+C content of which is 64.1 mol% (T m).


Subject(s)
Acacia/microbiology , Mesorhizobium/classification , Phylogeny , Root Nodules, Plant/metabolism , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Mesorhizobium/genetics , Mesorhizobium/isolation & purification , Molecular Sequence Data , Nucleic Acid Hybridization , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
Int J Syst Evol Microbiol ; 65(9): 2960-2967, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26025940

ABSTRACT

Four rhizobia-like strains, isolated from root nodules of Pisum sativum and Vicia faba grown in Anhui and Jiangxi Provinces of China, were grouped into the genus Rhizobium but were distinct from all recognized species of the genus Rhizobium by phylogenetic analysis of 16S rRNA and housekeeping genes. The combined sequences of the housekeeping genes atpD, recA and glnII for strain CCBAU 23252(T) showed 86.9 to 95% similarity to those of known species of the genus Rhizobium. All four strains had nodC and nifH genes and could form effective nodules with Pisum sativum and Vicia faba, and ineffective nodules with Phaseolus vulgaris, but did not nodulate Glycine max, Arachis hypogaea, Medicago sativa, Trifolium repens or Lablab purpureus in cross-nodulation tests. Fatty acid composition, DNA-DNA relatedness and a series of phenotypic tests also separated these strains from members of closely related species. Based on all the evidence, we propose a novel species, Rhizobium anhuiense sp. nov., and designate CCBAU 23252(T) ( = CGMCC 1.12621(T) = LMG 27729(T)) as the type strain. This strain was isolated from a root nodule of Vicia faba and has a DNA G+C content of 61.1 mol% (Tm).


Subject(s)
Phylogeny , Pisum sativum/microbiology , Rhizobium/classification , Root Nodules, Plant/microbiology , Vicia faba/microbiology , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizobium/isolation & purification , Sequence Analysis, DNA , Symbiosis
15.
Int J Syst Evol Microbiol ; 65(Pt 6): 1831-1837, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25754551

ABSTRACT

Six slow-growing rhizobial strains isolated from effective nodules of Erythrophleum fordii were classified into the genus Bradyrhizobiumbased on their 16S rRNA gene sequences. The results of multilocus sequence analysis of recA, glnII and gyrB genes and 16S-23S rRNA intergenic spacer (IGS) sequence phylogeny indicated that the six strains belonged to two novel species, represented by CCBAU 53325T and CCBAU 51502T, which were consistent with the results of DNA-DNA hybridization; CCBAU 53325T had 17.65-25.59 % relatedness and CCBAU 51502T had 22.69-44.58 % relatedness with five closely related type strains, Bradyrhizobium elkanii USDA 76T, B. pachyrhizi LMG 24246T, B. lablabi CCBAU 23086T, B. jicamae LMG 24556T and B. japonicum USDA 6T. In addition, analysis of phenotypic characteristics and fatty acid profiles also distinguished the test strains from defined species of Bradyrhizobium. Two novel species, Bradyrhizobium erythrophlei sp. nov., represented by the type strain CCBAU 53325T ( = HAMBI 3614T = CGMCC 1.13002T = LMG 28425T), and Bradyrhizobium ferriligni sp. nov., represented by the type strain CCBAU 51502T ( = HAMBI 3613T = CGMCC 1.13001T), are proposed to accommodate the strains.


Subject(s)
Bradyrhizobium/classification , Fabaceae/microbiology , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , China , DNA, Bacterial/genetics , DNA, Intergenic/genetics , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Multilocus Sequence Typing , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
16.
Antonie Van Leeuwenhoek ; 107(1): 281-90, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25391352

ABSTRACT

A Gram-negative, white, non-motile, rod shaped bacterial strain BN-19(T) was isolated from a root nodule of groundnut (Arachis hypogaea) in Pakistan. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain BN-19(T) formed a subclade in the genus Rhizobium together with Rhizobium alkalisoli CCBAU 01393(T), Rhizobium vignae CCBAU 05176(T), Rhizobium huautlense SO2(T) and Rhizobium tarimense PL-41(T) with sequence similarities of 97.5, 97.3, 97.2 and 97.1 % respectively. Sequence analysis of housekeeping genes atpD, glnII and recA (with sequence similarities of ≤92 %) confirmed the unique position of BN-19(T) in the genus Rhizobium. DNA-DNA relatedness between the strain BN-19(T) and R. alkalisoli CCBAU 01393(T), R. vignae CCBAU 05176(T), R. huautlense SO2(T) and R. tarimense PL-41(T) were 20.6, 22.5, 15.9 and 20.5 % respectively, further confirming that BN-19(T) represents a novel species in the genus Rhizobium. The DNA G + C content was 60.1 mol%. The dominant fatty acids of strain BN-19(T) were C19:0 cyclo ω8c, summed feature 2 (C14:0 3OH and/or C16:1 iso I) and summed feature 8 (C18:1 ω7c). Some phenotypic features also differentiate the strain BN-19(T) from the related species. On the basis of these results, strain BN-19(T) is considered to represent a novel species in the genus Rhizobium, for which the name Rhizobium pakistanensis sp. nov. is proposed. The type strain is BN-19(T) (=LMG 27895(T) = CCBAU 101086(T)).


Subject(s)
Arachis/microbiology , Rhizobium/classification , Rhizobium/isolation & purification , Bacterial Proteins/genetics , Bacterial Typing Techniques , Base Composition , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Molecular Sequence Data , Nucleic Acid Hybridization , Pakistan , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Root Nodules, Plant/microbiology , Sequence Analysis, DNA
17.
Int J Syst Evol Microbiol ; 65(Pt 2): 399-406, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25376850

ABSTRACT

Two novel Gram-stain-negative strains (CCBAU 03422(T) and CCBAU 03415) isolated from root nodules of Sophora flavescens were classified phylogenetically into the genus Phyllobacterium based on the comparative analysis of 16S rRNA and atpD genes. They showed 99.8 % rRNA gene sequence similarities to Phyllobacterium brassicacearum LMG 22836(T), and strain CCBAU 03422(T) showed 91.2 and 88.6 % atpD gene sequence similarities to strains Phyllobacterium endophyticum LMG 26470(T) and Phyllobacterium brassicacearum LMG 22836(T), respectively. Strain CCBAU 03422(T) contained Q-10 as its major quinone and showed a cellular fatty acid profile, carbon source utilization and other phenotypic characteristics differing from type strains of related species. DNA-DNA relatedness (lower than 48.8 %) further confirmed the differences between the novel strains and the type strains of related species. Strain CCBAU 03422(T) could nodulate and fix nitrogen effectively on its original host plant, Sophora flavescens. Based upon the results mentioned above, a novel species named Phyllobacterium sophorae is proposed and the type strain is CCBAU 03422(T) ( = A-6-3(T) = LMG 27899(T) = HAMBI 3508(T)).


Subject(s)
Phyllobacteriaceae/classification , Phylogeny , Root Nodules, Plant/microbiology , Sophora/microbiology , Symbiosis , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Nucleic Acid Hybridization , Phyllobacteriaceae/genetics , Phyllobacteriaceae/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
18.
Int J Syst Evol Microbiol ; 65(Pt 2): 497-503, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25385989

ABSTRACT

Five bacterial strains representing 45 isolates originated from root nodules of the medicinal legume Sophora flavescens were defined as two novel groups in the genus Rhizobium based on their phylogenetic relationships estimated from 16S rRNA genes and the housekeeping genes recA, glnII and atpD. These groups were distantly related to Rhizobium leguminosarum USDA 2370(T) (95.6 % similarity for group I) and Rhizobium phaseoli ATCC 14482(T) (93.4 % similarity for group II) in multilocus sequence analysis. In DNA-DNA hybridization experiments, the reference strains CCBAU 03386(T) (group I) and CCBAU 03470(T) (group II) showed levels of relatedness of 17.9-57.8 and 11.0-42.9 %, respectively, with the type strains of related species. Both strains CCBAU 03386(T) and CCBAU 03470(T) contained ubiquinone 10 (Q-10) as the major respiratory quinone and possessed 16 : 0, 18 : 0, 19 : 0 cyclo ω8c, summed feature 8 and summed feature 2 as major fatty acids, but did not contain 20 : 3 ω6,8,12c. Phenotypic features distinguishing both groups from all closely related species of the genus Rhizobium were found. Therefore, two novel species, Rhizobium sophorae sp. nov. for group I (type strain CCBAU 03386(T) = E5(T) = LMG 27901(T) = HAMBI 3615(T)) and Rhizobium sophoriradicis sp. nov. for group II (type strain CCBAU 03470(T) = C-5-1(T) = LMG 27898(T) = HAMBI 3510(T)), are proposed. Both groups were able to nodulate Phaseolus vulgaris and their hosts of origin (Sophora flavescens) effectively and their nodulation gene nodC was phylogenetically located in the symbiovar phaseoli.


Subject(s)
Nitrogen Fixation , Phylogeny , Rhizobium/classification , Root Nodules, Plant/microbiology , Sophora/microbiology , Symbiosis , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Nucleic Acid Hybridization , Phaseolus , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizobium/isolation & purification , Sequence Analysis, DNA , Ubiquinone/chemistry
19.
Appl Environ Microbiol ; 80(19): 6184-94, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25085491

ABSTRACT

The nodulation of Erythrophleum fordii has been recorded recently, but its microsymbionts have never been studied. To investigate the diversity and biogeography of rhizobia associated with this leguminous evergreen tree, root nodules were collected from the southern subtropical region of China. A total of 166 bacterial isolates were obtained from the nodules and characterized. In a PCR-based restriction fragment length polymorphism (RFLP) analysis of ribosomal intergenic sequences, the isolates were classified into 22 types within the genus Bradyrhizobium. Sequence analysis of 16S rRNA, ribosomal intergenic spacer (IGS), and the housekeeping genes recA and glnII classified the isolates into four groups: the Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi groups, comprising the dominant symbionts, Bradyrhizobium yuanmingense, and an unclassified group comprising the minor symbionts. The nodC and nifH phylogenetic trees defined five or six lineages among the isolates, which was largely consistent with the definition of genomic species. The phylogenetic results and evolutionary analysis demonstrated that mutation and vertical transmission of genes were the principal processes for the divergent evolution of Bradyrhizobium species associated with E. fordii, while lateral transfer and recombination of housekeeping and symbiotic genes were rare. The distribution of the dominant rhizobial populations was affected by soil pH and effective phosphorus. This is the first report to characterize E. fordii rhizobia.


Subject(s)
Bradyrhizobium/genetics , Fabaceae/microbiology , Genetic Variation , Symbiosis , Bacterial Proteins/genetics , Base Sequence , Bradyrhizobium/physiology , China , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Evolution, Molecular , Molecular Sequence Data , N-Acetylglucosaminyltransferases/genetics , Oxidoreductases/genetics , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant/microbiology , Sequence Analysis, DNA , Trees
20.
Int J Syst Evol Microbiol ; 64(Pt 6): 2017-2022, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24639241

ABSTRACT

A Gram-stain-negative, non-motile, pale yellow, rod-shaped bacterial strain, YW14(T), was isolated from soil and its taxonomic position was investigated by a polyphasic study. Strain YW14(T) did not form nodules on three different legumes, and the nodD and nifH genes were not detected by PCR. Strain YW14(T) contained Q-10 as the predominant ubiquinone. The major cellular fatty acid was C(18 : 1)ω7c. Phylogenetic analyses based on 16S rRNA gene sequences and seven housekeeping gene sequences (recA, atpD, glnII, gyrB, rpoB, dnaK and thrC) showed that strain YW14(T) belonged to the genus Rhizobium. Strain YW14(T) showed 16S rRNA gene sequence similarity of 93.4-97.3% to the type strains of recognized species of the genus Rhizobium. DNA-DNA relatedness between strain YW14(T) and the type strains of Rhizobium sullae IS123(T) and Rhizobium yanglingense CCBAU 71623(T) was 19.6-25.7%, indicating that strain YW14(T) was distinct from them genetically. Strain YW14(T) could also be differentiated from these phylogenetically related species of the genus Rhizobium by various phenotypic properties. On the basis of phenotypic properties, phylogenetic distinctiveness and genetic data, strain YW14(T) is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium flavum sp. nov. is proposed. The type strain is YW14(T) ( = KACC 17222(T) = CCTCC AB2013042(T)).


Subject(s)
Organothiophosphates/metabolism , Phylogeny , Rhizobium/classification , Triazoles/metabolism , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fabaceae/microbiology , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Nucleic Acid Hybridization , Pigmentation , Plant Root Nodulation , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizobium/isolation & purification , Sequence Analysis, DNA , Soil Pollutants/metabolism , Ubiquinone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...