Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Bioact Mater ; 38: 384-398, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38764448

ABSTRACT

Patient-derived tumor organoids (PDTOs) shows great potential as a preclinical model. However, the current methods for establishing PDTOs primarily focus on modulating local properties, such as sub-micrometer topographies. Nevertheless, they neglect to capture the global millimeter or intermediate mesoscale architecture that have been demonstrated to influence tumor response to therapeutic treatment and tumor progression. In this study, we present a rapid technique for generating collagen bundles with an average length of 90 ± 27 µm and a mean diameter of 5 ± 1.5 µm from tumor tissue debris that underwent mechanical agitation following enzymatic digestion. The collagen bundles were subsequently utilized for the fabrication of biomimetic hydrogels, incorporating microbial transglutaminase (mTG) crosslinked gelatin. These biomimetic hydrogels, referred to as MC-gel, were specifically designed for patient-derived tumor organoids. The lung cancer organoids cultured in MC-gel exhibited larger diameters and higher cell viability compared to those cultured in gels lacking the mesoscale collagen bundle; moreover, their irregular morphology more closely resembled that observed in vivo. The MC-gel-based lung cancer organoids effectively replicated the histology and mutational landscapes observed in the original donor patient's tumor tissue. Additionally, these lung cancer organoids showed a remarkable similarity in their gene expression and drug response across different matrices. This recently developed model holds great potential for investigating the occurrence, progression, metastasis, and management of tumors, thereby offering opportunities for personalized medicine and customized treatment options.

2.
Cell Death Dis ; 14(11): 730, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949874

ABSTRACT

Ubiquitin-specific protease 4 (USP4) represents a potential oncogene involved in various human cancers. Nevertheless, the biological roles and precise mechanism of USP4 in esophageal squamous cell carcinoma (ESCC) progression are not understood. Here, USP4 expression was found to be markedly upregulated in ESCC tumor tissues and cells. Loss- and gain-of-function assays suggested that USP4 silencing inhibited ESCC cell proliferation, migration, and invasion, while USP4 overexpression promoted these behaviors. Consistently, USP4 silencing repressed tumor growth and metastasis in an ESCC nude mouse model in vivo. As a target molecule of USP4, transforming growth factor-ß-activated kinase 1 (TAK1) also showed high expression in ESCC. Moreover, we observed that USP4 specifically interacted with TAK1 and stabilized TAK1 protein levels via deubiquitination in ESCC cells. Importantly, USP4 promotes ESCC proliferation, migration, and invasion via the MEK/ERK signaling pathway and can be inhibited by U0126. Neutral red (NR), an inhibitor of USP4 can suppress ESCC progression in vitro and in vivo. Overall, this study revealed that USP4/TAK1 plays crucial roles in ESCC progression by modulating proliferation, migration, and invasion, and USP4 might be a potential therapeutic target in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
3.
PeerJ ; 11: e15938, 2023.
Article in English | MEDLINE | ID: mdl-37637160

ABSTRACT

Background: The tumour-node-metastasis (TNM) staging system is insufficient to precisely distinguish the long-term survival of patients who underwent pneumonectomy for primary lung cancer. Therefore, this study sought to identify determinants of disease-free (DFS) and overall survival (OS) for incorporation into web-based dynamic nomograms. Methods: The clinicopathological variables, surgical methods and follow-up information of 1,261 consecutive patients who underwent pneumonectomy for primary lung cancer between January 2008 and December 2018 at Sun Yat-sen University Cancer Center were collected. Nomograms for predicting DFS and OS were built based on the significantly independent predictors identified in the training cohort (n = 1,009) and then were tested on the validation cohort (n = 252). The concordance index (C-index) and time-independent area under the receiver-operator characteristic curve (AUC) assessed the nomogram's discrimination accuracy. Decision curve analysis (DCA) was applied to evaluate the clinical utility. Results: During a median follow-up time of 40.5 months, disease recurrence and death were observed in 446 (35.4%) and 665 (52.7%) patients in the whole cohort, respectively. In the training cohort, a higher C-reactive protein to albumin ratio, intrapericardial pulmonary artery ligation, lymph node metastasis, and adjuvant therapy were significantly correlated with a higher risk for disease recurrence; similarly, the independent predictors for worse OS were intrapericardial pulmonary artery and vein ligation, higher T stage, lymph node metastasis, and no adjuvant therapy. In the validation cohort, the integrated DFS and OS nomograms showed well-fitted calibration curves and yielded good discrimination powers with C-index of 0.667 (95% confidence intervals CIs [0.610-0.724]) and 0.697 (95% CIs [0.649-0.745]), respectively. Moreover, the AUCs for 1-year, 3-year, and 5-year DFS were 0.655, 0.726, and 0.735, respectively, and those for 3-year, 5-year, and 10-year OS were 0.741, 0.765, and 0.709, respectively. DCA demonstrated that our nomograms could bring more net benefit than the TNM staging system. Conclusions: Although pneumonectomy for primary lung cancer has brought encouraging long-term outcomes, the constructed prediction models could assist in precisely identifying patients at high risk and developing personalized treatment strategies to further improve survival.


Subject(s)
Lung Neoplasms , Neoplasms, Second Primary , Humans , Pneumonectomy , Nomograms , Lymphatic Metastasis , Lung Neoplasms/surgery , Internet
4.
Cancer Med ; 12(2): 2117-2133, 2023 01.
Article in English | MEDLINE | ID: mdl-35789548

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) has a dismal prognosis, and hypoxia plays a key role in metastasis and proliferation of ESCC. Thus, we aimed to develop a hypoxia-based gene signature to assist in the treatment decisions and prognosis. METHODS: We performed consensus clustering analysis on samples from GSE53625 dataset from the Gene Expression Omnibus (GEO) database and used weighted gene co-expression network analysis to filter out candidate modules, which were then intersected with differentially expressed genes from clustered subgroups to obtain hypoxia-related genes (HRGs). After that, the aforementioned genes were used to construct risk score models and validated in The Cancer Genome Atlas (TCGA) database and Cox regression analysis were used to construct a nomogram. Immunohistochemical was used to detect protein expression levels of relevant genes. Moreover, the relationship between risk scores and tumor microenvironment was explored. RESULTS: A hypoxia risk model containing six genes (PNPLA1, CARD18, IL-18, SLC37A2, ADAMTS18, and FAM83C) was constructed by screening key HRGs. Poorer prognosis in the high-risk group than in the low-risk group. And Cox regression analysis showed that risk score was an independent prognostic factor. The nomogram based on risk scores could well predict 1-, 3-, and 5-year survival. P53, Wnt, and hypoxia signaling pathways may be some regulatory mechanisms of hypoxia associated with the tumor microenvironment. In addition, we confirmed the high expression of BGN and low expression of IL-18 in ESCC tissues. CONCLUSIONS: Our study determined the prognostic value of a 6-hypoxia gene signature and a prognostic model, providing potential prognostic predictors and therapeutic targets for ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Interleukin-18 , Esophageal Neoplasms/genetics , Prognosis , Hypoxia/genetics , Tumor Microenvironment/genetics , ADAMTS Proteins , Acyltransferases , Phospholipases
5.
Front Oncol ; 12: 879326, 2022.
Article in English | MEDLINE | ID: mdl-35875070

ABSTRACT

Background: Immunotherapy has achieved remarkable efficacy in treating oesophageal squamous cell carcinoma (ESCC). However, this treatment has limited efficacy in some patients. An increasing number of evidence suggested that immune cells within the tumour microenvironment (TME) are strongly related to immunotherapy response and patient prognosis. Thus, the landscape of immune cell infiltration (ICI) in ESCC needs to be mapped. Methods: In the study, the ICI pattern in 206 cases of ESCC was characterised by two algorithms, namely, CIBERSORT and single-sample gene set enrichment analysis (ssGSEA). The ICI score of each specimen was calculated by principal component analysis (PCA) according to ICI signature genes A (ICISGA) and B (ICISGB). The prognostic difference was evaluated by using the Kaplan-Meier method. The related pathways of ICI score were investigated by applying gene set enrichment analysis (GSEA). The R packages of 'regplot', 'timeROC' and 'rms' were applied for the construction of nomogram model. Result: Three TME subtypes were identified with no prognostic implication. A total of 333 differentially expressed genes (DEGs) among immune subtypes were determined, among which ICISGA and ICISGB were identified. Finally, ICI scores were constructed, and the patients were grouped into high or low ICI score group. Compared with the low ICI score group, the high ICI score group had better prognosis. GSEA revealed that the high ICI score group referred to multiple signalling pathways, including B cell receptor, Fc gamma R-mediated phagocytosis, NOD-like receptor and TGF-ß signalling pathways. In addition, the nomogram model was constructed to evaluate 1-, 3- and 5-year probability of death in an ESCC patient. The ROC and calibration curves indicated that the model has a good discrimination ability. Conclusion: We depicted a comprehensive ICI landscape in ESCC. ICI score may be used as a predictor of survival rate, which may be helpful for guiding immunotherapy in the future.

6.
Cancer Sci ; 113(3): 926-939, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34990040

ABSTRACT

C-X-C motif chemokine receptor 4 (CXCR4) belongs to the CXC chemokine receptor family, which mediates the metastasis of tumor cells and promotes the malignant development of cancers. However, its biological role and regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we found that CXCR4 expression was associated with lymph node metastasis and a poor prognosis. In vitro and in vivo studies demonstrated that CXCR4 overexpression promoted ESCC cell proliferation, migration, invasion, and survival, whereas silencing CXCR4 induced the opposite effects. Mechanically, HIF-1α transcriptionally regulates CXCR4 expression by binding to a hypoxia response element in its promoter. HIF-1α-induced ESCC cell migration and invasion were reversed by CXCR4 knockdown or treatment with MSX-122, a CXCR4 antagonist. Collectively, these data revealed that the HIF-1α/CXCR4 axis plays key roles in ESCC growth and metastasis and indicated CXCR4 as a potential target for ESCC treatment.


Subject(s)
Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Receptors, CXCR4/metabolism , Aged , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lymphatic Metastasis , Male , Mice , Prognosis , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Signal Transduction , Tumor Hypoxia/genetics , Xenograft Model Antitumor Assays
7.
J Cancer ; 12(21): 6445-6453, 2021.
Article in English | MEDLINE | ID: mdl-34659535

ABSTRACT

Background: This study aimed to investigate the metastasis patterns and prognosis of breast cancer (BC) in patients aged ≥ 80 years with distant metastases, as the current literature lacks studies in this population. Methods: A retrospective, population-based study using data from the Surveillance, Epidemiology, and End Results (SEER) database was conducted to evaluate 36,203 patients with BC from 2010 to 2016. Patients were classified into three groups, the older group (aged ≥ 80 years), middle-aged group (aged 60-79 years), and younger group (aged < 60 years). The role of age at the time of BC diagnosis in metastasis patterns was investigated, and the survival of different age groups of patients with BC was assessed. Results: Overall, 4,359 (12%) patients were diagnosed with BC at age ≥ 80 years, 19,688 (54%) at 60-79 years, and 12,156 (34%) at < 60 years. Compared with the other two groups, those in the older group had a lower rate of treatment acceptance. Statistical analysis revealed that older patients were more likely to have lung invasion only (odds ratio [OR]: 1.274, 95% confidence interval [CI]: 1.163-2.674) and less likely to have bone invasion only (OR: 0.704, 95% CI: 0.583-0.851), brain invasion only (OR: 0.329, 95% CI: 0.153-0.706), or multiple metastatic sites (OR: 0.361, 95% CI: 0.284-0.458) compared to the other two groups. Age at diagnosis was an independent prognostic factor for survival. The older group had the worst overall survival (OS, P<0.001) and BC-specific survival (CSS, P<0.001). Furthermore, patients aged ≥ 80 years with only liver metastasis had the worst CSS and OS. Conclusion: Patients aged ≥ 80 years were less likely to be receptive to cancer-related therapy and had the highest cancer mortality rate among all patients. Our findings will hopefully help clinicians develop more appropriate modalities of cancer treatment in elderly BC patients.

8.
Front Mol Biosci ; 8: 679031, 2021.
Article in English | MEDLINE | ID: mdl-34109216

ABSTRACT

Lung cancer is a serious malignancy, and lung adenocarcinoma (LUAD) is the most common pathological subtype. Immune-related factors play an important role in lymph node metastasis. In this study, we obtained gene expression profile data for LUAD and normal tissues from the TCGA database and analyzed their immune-related genes (IRGs), and observed that 459 IRGs were differentially expressed. Further analysis of the correlation between differentially expressed IRGs and lymph node metastasis revealed 18 lymph node metastasis-associated IRGs. In addition, we analyzed the mutations status, function and pathway enrichment of these IRGs, and regulatory networks established through TF genes. We then identified eight IRGs (IKBKB, LTBR, MIF, PPARD, PPIA, PSME3, S100A6, SEMA4B) as the best predictors by LASSO Logistic analysis and used these IRGs to construct a model to predict lymph node metastasis in patients with LUAD (AUC 0.75; 95% CI: 0.7064-0.7978), and survival analysis showed that the risk score independently affected patient survival. We validated the predictive effect of risk scores on lymph node metastasis and survival using the GEO database as a validation cohort and the results showed good agreement. In addition, the risk score was highly correlated with infiltration of immune cells (mast cells activated, macrophages M2, macrophages M0 and B cells naïve), immune and stromal scores, and immune checkpoint genes (LTBR, CD40LG, EDA2R, and TNFRSF19). We identified key IRGs associated with lymph node metastasis in LUAD and constructed a reliable risk score model, which may provide valuable biomarkers for LUAD patients and further reveal the mechanism of its occurrence.

9.
Pharmgenomics Pers Med ; 14: 497-508, 2021.
Article in English | MEDLINE | ID: mdl-33953601

ABSTRACT

OBJECTIVE: To explore the mechanism of miR-195-5p in the pathogenesis non-small cell lung cancer (NSCLC) and cisplatin resistance. METHODS: The function of miR-195-5p in NSCLC and cisplatin resistance were determined by MTT, scratch assay, transwell assay, and nude mice xenograft experiments. miR-195-5p target gene was identified by dual-luciferase reporter assays and real-time PCR analysis. RESULTS: miR-195-5p content was lower in A549/DDP than that in A549 cells, with reduced chemotherapy sensitivity and increased cell invasion and migration ability. The loss-of-function and gain-of-function assays illustrated that miR-195-5p might have increased the chemosensitivity to cisplatin in the A549/DDP cells and decreased cell migration and invasion. FGF2 is a negatively correlated action target of miR-195-5p. miR-195-5p might affect EMT by inhibiting FGF2. Overexpression of FGF2 resulted in enhanced cisplatin resistance in the cells, while miR-195-5p might have reversed this resistance. CONCLUSION: Overall, miR-195-5p might target FGF2 to reduce cisplatin resistance in A549/DDP cells and enhance chemosensitivity.

10.
Front Oncol ; 11: 640080, 2021.
Article in English | MEDLINE | ID: mdl-33854974

ABSTRACT

Adenocarcinoma of the esophagogastric junction (AEG) is a fatal disease. Accumulating evidence indicates that, for a comprehensive understanding of AEG, studies should be conducted not only to investigate tumor cells, but also the tumor microenvironment (TME). In this study, we collected AEG patient data from The Cancer Genome Atlas, and used the CIBERSORT algorithm to analyze tumor-infiltrating immune cell profiles. The levels of CD8+ T cells and M0 and M2 macrophages were relatively high in AEG tissues. M2 macrophages were abundant in G3 tumors, and neutrophils were associated with poor prognosis. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immunosuppressive cells which share a similar origin to neutrophils and macrophages. We further analyzed the levels of MDSCs in AEG patients and healthy donors (HD) using flow cytometry. MDSC levels were elevated at tumor sites, with polymorphonuclear MDSCs (PMN-MDSCs) being the predominant subtype. Circulating MDSCs partly represented cells at the tumor site. We observed that PMN-MDSC levels at tumor sites were positively correlated with advanced staging, low grade, lymph node metastasis, and HER2- status. Immunohistochemistry and immunofluorescence analyses indicated that activation of the STAT3 and NF-κB pathways in MDSCs may be a potential mechanism for cancer progression. Our studies provided a comprehensive perspective involving tumor-infiltrating immune cells, and detailed insights into the proportion of MDSCs in AEG and their clinical significance. Together, these findings may improve our current understanding of cancer progression involving tumor-infiltrating immune cells in the TME.

11.
Eur J Clin Invest ; 51(8): e13563, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33901298

ABSTRACT

BACKGROUND: To investigate the expression of high-mobility group AT-hook 2 (HMGA2) and miR-204-5p in oesophageal squamous cell carcinoma (ESCC) and their biological roles in ESCC development and progression. METHODS: HMGA2 and miR-204-5p expression levels in ESCC tissues and cell lines were detected by qRT-PCR, Western blotting and immunohistochemical staining. ESCC cell lines were transfected with a small interfering RNA for HMGA2 and miR-204-5p mimic to downregulate and upregulate the expression levels of HMGA2 and miR-204-5p, respectively. The growth, migration and invasion abilities of ESCC cells were assessed by MTT, colony formation, wound-healing and Transwell assays, respectively. A luciferase reporter gene assay was used to determine whether the 3'-untranslated coding regions of HMGA2 could be directly bound by miR-204-5p. RESULTS: HMGA2 expression was markedly upregulated (P < .001), while miR-204-5p expression was markedly downregulated (P = .003) in ESCC tissues compared with adjacent normal tissues. HMGA2 expression was correlated with tumour size, invasion depth, lymph node metastasis and tumour-node-metastasis stage (all P < .05) and was identified as an independent prognostic factor for ESCC patients. The expression levels of HMGA2 and miR-204-5p were negatively correlated (r2  = 0.609, P < .001). HMGA2 knockdown or miR-204-5p overexpression markedly inhibited ESCC cell growth, migration and invasion (P < .05). In addition, restoration of HMGA2 expression partly reversed the inhibitory effects of miR-204-5p overexpression on migration and invasion (P < .05). The luciferase reporter gene assay suggested that HMGA2 is a direct downstream target of miR-204-5p. CONCLUSION: HMGA2 functions as an oncogene in the growth and metastasis of ESCC and is negatively regulated by miR-204-5p.


Subject(s)
Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , HMGA2 Protein/genetics , MicroRNAs/genetics , Aged , Cell Line, Tumor , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Female , Humans , Lymphatic Metastasis , Male , Neoplasm Invasiveness
12.
Cancer Biol Med ; 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33710803

ABSTRACT

Esophageal cancer is the eighth most common malignant tumor and the sixth leading cause of cancer-related death worldwide. Esophageal squamous cell carcinoma (ESCC) is the main histological type of esophageal cancer, and accounts for 90% of all cancer cases. Despite the progress made in surgery, chemotherapy, and radiotherapy, the mortality rate from esophageal cancer remains high, and the overall 5-year survival rate is less than 20%, even in developed countries. The C-X-C motif chemokine ligand 12 (CXCL12) is a member of the CXC chemokine subgroup, which is widely expressed in a variety of tissues and cells. CXCL12 participates in the regulation of many physiological and pathological processes by binding to its specific receptor, C-X-C motif chemokine receptor type 4 (CXCR4), where it causes embryonic development, immune response, and angiogenesis. In addition, increasing evidence indicates that the CXCL12/CXCR4 axis plays an important role in the biological processes of tumor cells. Studies have shown that CXCL12 and its receptor, CXCR4, are highly expressed in ESCC. This abnormal expression contributes to tumor proliferation, lymph node and distant metastases, and worsening prognosis. At present, antagonists and imaging agents against CXCL12 or CXCR4 have been developed to interfere with the malignant process and monitor metastasis of tumors. This article summarizes the structure, function, and regulatory mechanism of CXCL12/CXCR4 and its role in the malignancy of ESCC. Current results from preclinical research targeting CXCL12/CXCR4 are also summarized to provide a reference for the clinical diagnosis and treatment of ESCC.

13.
Front Oncol ; 10: 554759, 2020.
Article in English | MEDLINE | ID: mdl-33042838

ABSTRACT

BACKGROUND: A growing body of evidence indicates that long non-coding RNAs (lncRNAs) can act as competitive endogenous RNAs (ceRNAs) to bind to microRNAs (miRNAs), thereby affecting and regulating the expression of target genes. The lncRNA-miRNA-mRNA ceRNA network has been theorized to play an indispensable role in many types of tumors. However, the role of the lncRNA-related ceRNA regulatory network in lung adenocarcinoma (LUAD) remains unclear. METHODS: We downloaded the RNAseq and miRNAseq data of LUAD from The Cancer Genome Atlas (TCGA) data portal and identified differentially expressed lncRNAs (DElncRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) between LUAD and corresponding paracancerous tissues by using the edgeR package of R software. We constructed the lncRNA-miRNA-mRNA ceRNA network by using Cytoscape (version 3.7.2) on the basis of the interaction generated from the miRcode, miRTarBase, miRDB, and TargetScan databases. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed with DAVID 6.8 bioinformatics resources and plotted by using the ggplot2 package in R. The effect of genes on LUAD prognosis was assessed by applying the survival package in R in accordance with the Kaplan-Meier curve. RESULTS: In total, 1645 DElncRNAs, 117 DEmiRNAs, and 2729 DEmRNAs were identified in LUAD. The LUAD-specific ceRNA network was composed of 157 nodes and 378 edges (329 DElncRNA-DEmiRNA interactions and 49 DEmiRNA-DEmRNA interactions). GO and KEGG pathway annotations suggested that the LUAD-specific ceRNA network was related to tumor-related molecular functions and pathways. Seven lncRNAs (DISC1-IT1, SYNPR-AS1, H19, LINC00460, LINC00518, DSCR10, and STEAP2-AS1), one miRNA (hsa-mir-31), and 16 mRNAs (ATAD2, OSCAR, KIF23, E2F7, PFKP, MCM4, CEP55, CBX2, CCNE1, CLSPN, CCNB1, CDC25A, EZH2, CHEK1, SLC7A11, and PBK) were revealed to be significantly correlated with overall survival. CONCLUSION: In this study, we described the potential regulatory mechanism of the progression of LUAD. We proposed a new lncRNA-miRNA-mRNA ceRNA network that could help further explore the molecular mechanisms of LUAD.

SELECTION OF CITATIONS
SEARCH DETAIL
...