Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Appl Biochem ; 70(1): 164-174, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35307889

ABSTRACT

This study aimed to explore the structure and antibacterial properties of chitooligosaccharide monomers with different polymerization degrees and to provide a theoretical basis for inhibiting Salmonella infection. Chitosan was used as a raw material to prepare and separate low-molecular-weight chitooligosaccharides. Chitobiose, chitotriose, and chitotetraose were obtained by gradient elution with cation exchange resin. The molecular weights and acetyl groups of the three monomers were determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and nuclear magnetic resonance (NMR), respectively. Three chitooligosaccharide monomers were used to explore the antibacterial effect on Salmonella. The results showed that the degree of deacetylation of chitosan was 92.6%, and the enzyme activity of chitosanase was 102.53 U/g. Within 18 h, chitosan was enzymatically hydrolyzed to chitooligosaccharides containing chitobiose, chitotriose, and chitotetraose, which were analyzed by thin-layer chromatography (TLC) and MALDI-TOF. MALD-TOF and TLC showed that the separation of monomers with ion exchange resins was effective, and NMR showed that there was no acetyl group. Chitobiose had a poor inhibitory effect on Salmonella, and chitotriose and chitotetraose had equivalent antibacterial effects.


Subject(s)
Brachyura , Chitosan , Animals , Chitosan/pharmacology , Chitosan/chemistry , Hydrolysis , Polymerization , Chitin , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Glycoside Hydrolases/chemistry , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...